Browse > Article

Fabricating Highly Aligned Electrospun Poly(${\varepsilon}$-caprolactone) Micro/Nanofibers for Nerve Tissue Regeneration  

Yoon, Hyeon (Department of Dental Engineering, School of Dentistry, Chosun University)
Lee, Haeng-Nam (Bio/Nanofluidics Lab, Department of Mechanical Engineering, Chosun University)
Park, Gil-Moon (Bio/Nanofluidics Lab, Department of Mechanical Engineering, Chosun University)
Kim, Geun-Hyung (Department of Dental Engineering, School of Dentistry, Chosun University)
Publication Information
Polymer(Korea) / v.34, no.3, 2010 , pp. 185-190 More about this Journal
Abstract
Recently, an electrospinning process, which is one of various nanotechnologies, has been used in fabricating micro/nanosized fibers. The fabricated electrospun micro/nanofibers has been widely applied in biomedical applications, specially in tissue regeneration. In this study, we fabricated highly aligned electrospun biodegradable and biocompatible poly(${\varepsilon}$-caprolactone)(PCL) micro/nanofibers by using a modified electrospinning process supplemented with a complex electric field. From this process, we can attain highly aligned electrospun nanofibers compared to that fabricated with the normal electrospinning process. To observe the feasibility of the highly aligned electrospun mat as a biomedical scaffold, nerve cells(PC-12) was cultured and it was found that the cells those were well oriented to the direction of aligned fibers.
Keywords
a complex field electrospinning process; micro/nanofiber; poly(${\varepsilon}$-caprolactone); nerve cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. M. Deitzel, W. Kosik, S. H. McKnight, N. C. B. Tan, J. M. DeSimone, and S. Crette. Polymer, 43, 1025 (2002).   DOI   ScienceOn
2 G. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 44. 1426 (2006) .   DOI   ScienceOn
3 H. Yoon, G. H. Kim, and W. D. Kim, Polymer(Korea), 32, 4, 1 (2008).
4 P. Yilgor, R. A. Sousa, R. L. Reis, N. Hasirci, and V. Hasirci. Macromol. Symp., 269, 92 (2008).
5 T. B. Jones, J. Electrostat., 6, 69 (1979).   DOI   ScienceOn
6 Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).   DOI   ScienceOn
7 D. Li, Y. Wang, and Y. Xia, Nano Letters, 3,1167 (2003).   DOI   ScienceOn
8 G. T. Kim, Y. C. Ahn, J. K. Lee, N. Kattamuri, and C. M. Sung, ILASS-Korea, 8, 31 (2003).
9 E. Zussman, A. Theron, and A. L. Yarin, Appl. Phys. Lett., 82, 973 (2003).   DOI   ScienceOn
10 M. M. Hohman, M. Shin, G. C. Rutledge, and M. P. Brenner. Physics of Fluids, 13, 2201 (2001).   DOI   ScienceOn
11 A. K. Vogt, G. Wrobel, and W. Meyer, Biomaterials, 26, 2549 (2005).   DOI   ScienceOn
12 A. A. Oliva, C. D. James, and C. E. Kingman, Neurochem. Res., 28, 1639 (2003).   DOI   ScienceOn
13 H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 16, 4585 (1999).   DOI   ScienceOn
14 J. M. Deizel, J. Kleinmeyer, D. Harris, and N. C. B. Tan, Polymer, 42, 261 (2001).   DOI   ScienceOn
15 J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995).   DOI   ScienceOn
16 D. H. Reneker, A. L. Yarine, H. Fong, and S, Koombhongse, J. Appl. Phys., 87, 4531 (2009).
17 G. I. Taylor, Proceedings of Royal Society of London, A280, 383 (1964).
18 C. K. Yeung, L. Lauer, and A. Offenhausser, Neurosci. Lett., 301, 147 (2001).   DOI   ScienceOn
19 C. H. Lee, H. J. Shin, I. H. Cho, Y. M. Kang, I. A. Kim, K. D. Park, and J. W. Shin, Biomaterials, 26, 1261 (2005).   DOI   ScienceOn
20 A. Formhals, US Patent 1, 975, 504 (1934).
21 D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).   DOI   ScienceOn
22 S. W. Chun, Fiber Technology and Industry, 12, 2 (2008).   과학기술학회마을