DOI QR코드

DOI QR Code

Alleviating Effects of Euphorbiae humifusae L. Extract on the Neurotoxicity Induced by Lead

납의 신경독성에 대한 지금초 추출물의 독성경감 효과

  • Lee, Sang-Hee (Department of Internal Medicine, Sanbon Hospital, School of Medicine, Wonkwang University) ;
  • Seo, Young-Mi (Department of Nursing, College of Medicine, Wonkwang Health Science University)
  • 이상희 (원광대학교 의과대학 산본병원 내과) ;
  • 서영미 (원광보건대학교 간호학과)
  • Received : 2018.11.01
  • Accepted : 2018.12.03
  • Published : 2018.12.31

Abstract

This study examined the neurotoxicity induced by lead acetate (LA) on cultured C6 glioma cells and the protective effects of Euphorbiae humifusae L. (EH) extract against LA-induced cytotoxicity. In this study, LA exhibited neurotoxicity in a dose-dependent manner compared to the control, and was determined to be highly-toxic according to the toxic criteria. The $XTT_{50}$ value of LA was calculated at a concentration of $38.6{\mu}M$ after C6 glioma cells were incubated for 72 hours in the media containing $30{\sim}50{\mu}M$ of LA, respectively. In addition, LA-induced neurotoxicity was suggested to correlate with the level of oxidative stress because vitamin E, an antioxidant, increased the cell viability damaged by LA-induced cytotoxicity. The EH extract effectively prevented cell injury from LA-induced cytotoxicity via its antioxidative effects, such as inhibitory ability of lipid peroxidation, superoxide dismutase-like activity and 1,1-diphenyl-2-picrylhydrazyl-radical scavenging activity. These antioxidative effects may result in components, such as polyphenol or flavonoids including gallic acid or quercetin. In conclusion, natural resources, such as EH extracts, may be a useful putative agent for the treatment of diseases associated with oxidative stress, such as lead neurotoxicity.

본 연구는 배양 C6 glioma 세포를 대상으로 초산납(lead acetate, LA)의 신경독성을 알아보았으며, 또한 LA의 세포독성에 대한 지금초(Euphorbiae humifusae L., EH) 추출물의 영향을 조사하였다. 본 연구에서, LA는 대조군에 비하여 농도 의존적으로 세포 생존율이 감소됨으로서 신경독성을 보였으며, $0{\sim}50{\mu}M$의 LA가 각각 포함된 배양액에서 72시간 동안 세포를 처리한 결과, $XTT_{50}$ 값은 $38.6{\mu}M$로 고독성인 것으로 나타났다. 또한, $30{\sim}50{\mu}M$의 LA가 각각 포함된 배양액에서 72시간 동안 세포를 처리한 결과 $XTT_{50}$$38.6{\mu}M$에서 나타났다. 이와 동시에 항산화제인 vitamin E의 처리에서 LA 독성에 의하여 감소된 세포 생존율이 유의하게 증가함으로서 LA의 독성에 산화적 손상이 관여하고 있음을 제시하였다. 한편, EH 추출물은 지질과산화 저해능을 비롯하여 superoxide dismutase (SOD)-유사활성능 및 DPPH-라디칼 소거능과 같은 항산화능에 의하여 LA 독성을 효과적으로 방어하였다. 이같은 항산화 효과는 gallic acid와 같은 폴리페놀이나 또는 flavonol이나 quercetin과 같은 플라보노이드와 같은 항산화성분에 기인된 결과로 생각된다. 결론적으로, EH 추출물과 같은 천연 소재는 차후 납신경독성과 같이 산화적 손상과 관련된 질환 치료를 위한 유용한 활용 인자로 사료된다.

Keywords

References

  1. Lavid N, Schwartz A, Yarden O, Tel-Or E. The involvement of polyphenols and peroxidase avtivaties in heavy metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta. 2001;212:323-331. https://doi.org/10.1007/s004250000400.
  2. Liu Y, Hsieh WC, Yang BC. In vitro aberrant gene expression as the indicator of lead-induced neurotoxicity in U-373 MG cells. Toxicol. 2000;147:59-64. https://doi.org/10.1016/S0300-483X(00)00186-4.
  3. Verstraeten SV, Aimo L, Oteiza PI. Aluminum and lead molecular mechanisms of brain toxicity. Arc Toxicol. 2008;82: 789-802. https://doi.org/10.1007/s00204-008-0345-3.
  4. Son YW, Lim YS, Seo YM. Protective effect of NMDA receptor antagonist on the neurotoxicity induced by lead as an environmental pollutant. J Kor Soc Occu Environ Hyg. 2017;27: 193-200. https://doi.org/10.15269/JKSOEH.2017.27.3.193.
  5. Jung JY, Oh YH, Park SH, Yoo MY, Pyo AJ, et al. Antioxidative and whitening effects Houttuynia cordata extract on lead acetate of hair dye component. J Invest Cosm. 2014;10:99-105.
  6. Aleksandra D, Jose LV, Ryota L, Mohammed KH, Sunniyat R, Alan B, Nabil H. PGC-$1{\alpha}$ controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity. J Aging. 2015;7:629-643. https://doi.org/10.18632/aging.100790
  7. Oh YH, Park ST. Protective effect of Prunella vulgaris L. var lilacina Nakai extract on cultured NIH3T3 fibroblasts damaged by mutagenic mercury-induced toxicity. J People Plants Environ. 2015;18:41-46. https://doi.org/10.11628/ksppe.2015.18.1.041
  8. Yoo SM, Back JC, Seo YM, Kim YS, Choi YJ. Effect of phenol compound on the cytotoxicity of heavy metal. J Life Natr Res. 2008;30:80-87.
  9. Rosen D, Siddique T, Patterson D, Figlewiez D, Sapp P. Mutation in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature(London). 1993;362:59-62. https://doi.org/10.1038/362059a0
  10. Ha DH, Yang HW, Lee JH, Lee KC. Effect of NMDA receptor antagonist on osteoblasts damaged by methylmercuric chloride. Kor J Oriental Physiol Pathol. 2003;17:412-415.
  11. Gracia-Lopez D, Cuevas MJ, Almar M, Lima E. Paz JA, Gonzalez-Gallego J. Effects of eccentric exercise on NF-kB activation in blood monolayer cells. Med Sci Sports Exerc. 2007;39:653-664. https://doi.org/10.1249/mss.0b013e31802f04f6
  12. Jung JY, Jung IJ, Jekal SJ. The protective effect of Lonicerae flos extraction on cultured C6 glioma cells damaged by aluminum of dementia inducer. Kor J Lab Sci. 2017;49:271-278. https://doi.org/10.15324/kjcls.2017.49.3.271.
  13. Lee JM, Kim IC, Hur SS. Screening of antimicrobial activities of extracts from local some native plants against acnes strain. J Invest Cosm. 2013;9:379-387.
  14. Fujisawa S, Kadoma Y. Anti- and pro-oxidant effects of oxidized quercetin curcumin-related compounds with thiols or ascorbate as measured by the induction period method. In Vitro. 2006;20:39-44.
  15. Schwartz SM, Foy L, Bowen-Pope DF, Ross R. Derivation and properties of plate-derived growth factor-independent rat smooth muscle cells. Am J Pathol. 1990;136:1417-1428.
  16. Lim KT Park ST, Cho MK, Chung YT. Neuronal cytotoxicity of oxygen radical in newborn mouse forebrain culture. Kor J Toxicol. 1995;11:187-192.
  17. Chen YJ, Yang BC, Hsieh WC, Huang BM, Liu MY. Enhancement of TNF-${\alpha}$ expression does not trigger apoptosis upon exposure of glial cells to lead and lipopolysaccharide. Toxicol. 2002;178:183-191. https://doi.org/10.1016/S0300-483X(02)00225-1.
  18. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J Immunol Meth. 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  19. Kikuzaki H, Nakatani N. Antioxidant effect of some ginger constituents. J Food Sci. 1993;58:1407-1410. https://doi.org/10.1111/j.1365-2621.1993.tb06194.x.
  20. Marklund S, Marklund G. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:468-474.
  21. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 1958;181:1199-1200. https://doi.org/10.1038/1811199a0
  22. Folin O, Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem. 1912;12:239-243.
  23. A.O.A.C. Official methods of analysis (12 th). A.O.A.C., Washington D.C. 1995;127-130.
  24. Tiffany CE, Garcia DE, Wu JN, Zmudzki J, Brattpn GR. Effects of lead on viability and intercellular metal content of C6 glioma cells. J Toxicol Environ Hlth. 1988;23:267-279. https://doi.org/10.1080/15287398809531112.
  25. Borenfreud F, Puerner JA. A simple quantitative procedure using monolayer culture for cytotoxicity assay (HTD/NR-90). J Tiss Cult Meth. 1985;9:7-9. https://doi.org/10.1007/BF01666038
  26. Busselberg D, Evans ML, Haas HL, Carpenter DO. Blockage of mammalian and invertebrate calcium channels by lead. Neurotoxicol. 1993;14:249-258.
  27. Jung IJ, Jang HS, Seo YM. Protective effect of Ajuga multiflora BUNGE extract on lead toxicity of environmental pollutant. J People Plants Environ. 2017;20:341-350. https://doi.org/10.11628/ksppe.2017.20.4.341
  28. Son YW, Jung IJ. Alleviating effect of Elscholtziae splendense extract on the induced toxicity by lead acetate of hair dye compound in cultured glioma cells. J Invest Cosm. 2012;8:115-120. https://doi.org/10.15810/jic.2012.8.2.006
  29. Kang SR, Park EY, Park MS, Park JH, Kim YC. Antioxidative and collagen synthetic abilities of Gardeniae fructus and Saururus chinensis water extract. J Invest Cosm. 2011;7:165-171. https://doi.org/10.15810/jic.2011.7.2.010
  30. Han SK, Kim SM, Pyo BS. Antioxidative effect of glasswort (Salicornia herbacea L.) on the lipid oxidation of pork. Kor J Food Sci Res. 2003;23:46-49.
  31. Lim JA, Oh HJ, Baek SH. Antiaging ability of methanol extract from Euonymus alatus. J Cosm Pub Health. 2007;3:41-45.
  32. Bressler J, Forman S, Goldstein GW. Phospholipid metabolism in neural microvascular endothelial cells after exposure to lead in vitro. Toxicol Appl Pharmacol. 1994;126:352-360. https://doi.org/10.1006/taap.1994.1126
  33. El-Tantawy WH. Antioxidant effects of Spirulina supplement against lead acetate-induced hepatic injury in rats. J Tradit Complement Med. 2015;6:327-331. https://doi.org/10.1016/j.jtcme.2015.02.001.

Cited by

  1. 크롬염으로 손상된 배양 NIH3T3 섬유모세포에 대한 짚신나물 추출물의 보호 효과 vol.51, pp.2, 2019, https://doi.org/10.15324/kjcls.2019.51.2.205
  2. 환경오염물질인 황산알루미늄의 신경독성에 대한 파리풀 추출물의 항산화 효과 vol.51, pp.2, 2018, https://doi.org/10.15324/kjcls.2019.51.2.235
  3. 금속매염제인 초산구리의 세포독성에 대한 자귀나무잎 추출물의 보호 효과 vol.45, pp.5, 2019, https://doi.org/10.5668/jehs.2019.45.5.520
  4. Protective Effect of Aster tataricus L. Extract on the Dermal Cytotoxicity Induced by Sodium Bromate, Oxidant of Hair Dye vol.25, pp.4, 2019, https://doi.org/10.15616/bsl.2019.25.4.348
  5. 파킨슨유발제인 이산화망간으로 손상된 배양 대뇌 신경아교세포에 대한 노박덩굴 추출물의 보호 vol.52, pp.2, 2018, https://doi.org/10.15324/kjcls.2020.52.2.150
  6. 염화제일철 매염제로 손상된 배양 NIH3T3 섬유아세포에 대한 석잠풀 추출물의 항산화 효과 vol.11, pp.8, 2021, https://doi.org/10.22156/cs4smb.2021.11.08.201
  7. Protective Effects of Lespedeza bicolor Extract on B16/F10 Melanoma Cell Lines Damaged by Lead Acetate, Heavy Metal Compounds vol.53, pp.4, 2018, https://doi.org/10.15324/kjcls.2021.53.4.363