• Title/Summary/Keyword: 시역전

Search Result 218, Processing Time 0.03 seconds

Analysis of Time Reversal Transmission Performance for Underwater Communications (시역전 수중 디지털 통신 성능 분석)

  • Kim, Hyeon-Su;Kwon, Yang-Soo;Lee, Il-Shin;Chung, Jae-Hak;Kim, Seong-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.213-221
    • /
    • 2009
  • The time reversal mirror (TRM) method for underwater communications has been developed to improve transmission performance with low complexity. However, digital communication parameters for TRM have not been researched deeply. This paper demonstrates that the TRM scheme obtains spatial diversity gain similar to multiple antennas, and proposes design methodologies of symbol interval, frame duration and transmission protocol for time reversal mirror transmission. Simulation results show that spatial diversity gain is achieved and the effect of ISI decreases as the number of transducer increases.

Time-reversal Channel Capacity in Rayleigh and Ricean Environment (Rayleigh와 Ricean 채널 환경에서 동작하는 시역전 통신 채널 용량)

  • Koh, Il-Suek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.243-250
    • /
    • 2009
  • In this paper, a closed-form expression of the ergodic channel capacity for a narrow-band time-reversal communication scheme is analytically formulated. In the time-reversal communication scenario, a transmitter sends a signal and a so-called time-reversal array receives the signal. Then, the received signal is reversed in the time do main and resent to the original transmitter. Here, one transmitter and an antenna array for the time-reversal array are assumed. Since the spacing between the array elements is large, the signals received by each antenna element can be considered independent. For simplicity, the communication channel is assumed stationary, whose properties are not changed for the time-reversal process. Based on the obtained formulation, the channel capacities for the time-reversal and the conventional channels are compared.

Weighted TR prefilter for Minimum ISI in indoor wireless Communication System (실내 무선 통신 환경에서 심볼 간 간섭 최소화를 위해 가중치를 적용한 시역전 필터)

  • Yoon, Mi-Sun;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.52-57
    • /
    • 2012
  • We propose a weighted time-reversal prefilter for indoor wireless communication systems. In the indoor wireless communication environments, the bit error rate (BER) performance is significantly degraded by the delay spread. The conventional schemes have complex receivers to recover deterioration of the BER. The proposed time-reversal prefilter simplifies the structure of receivers, minimizes the inter-symbol interference (ISI) and maintains the peak power level of the received signal. The simulation results show that the weighted time-reversal prefilter improves the BER performance in comparison with the conventional time-reversal prefilter.

Underwater Acoustic Barrier with Passive Ocean Time Reversal and Application to Underwater Detection (수동형 해양 시역전 수중음향장벽과 수중탐지에의 응용)

  • Shin, Keecheol;Kim, Jeasoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.551-560
    • /
    • 2012
  • Target detection by acoustic barrier method includes active and passive sonar technique and time reversal process whose theoretical background is already well defined. In this paper, the concept and theory of underwater detection by passive ocean time reversal is established. Also, the reason that this study was conducted was to investigate feasibility of complex mathematical modeling to provide some predictive capability for underwater acoustic barrier with passive time reversal. It may eventually lead to a useful predictive tool when designing underwater acoustic barrier detection system using the passive time reversal concept.

Performance Evaluation of The Weighted TR Prefilter with Channel Estimation Error in An Indoor Wireless Communication Environment (실내 무선 통신 환경에서 채널 추정 에러에 따른 가중치를 부여한 시역전 필터의 성능 평가)

  • Yoon, Misun;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.76-82
    • /
    • 2013
  • We evaluate the performance of the time-reversal (TR) prefilter and the weighted TR prefilter in an indoor wireless communication system with channel estimation errors. The TR prefilter uses a time-reversed channel as a prefilter to maximize received peak power. The equivalent channel of the TR prefilter is an 공분산 of the channel and the received peak power is maximized. When there are channel estimation errors, the equivalent channel is not an 공분산 of the channel and the received peak power cannot be maximized. The weighted TR prefilter minimizes the inter-symbol interference and maintains the received peak power. Thus, even when there are some channel estimation errors, the weighted TR prefilter can guarantee the received peak power.

Performance analysis of underwater acoustic communication using time reversal mirror based on generalized sidelobe canceller (일반화된 부엽 제거기 기반 시역전 기술을 이용한 수중음향통신 성능 분석)

  • Nam, Ki-Hoon;Kim, J.S.;Byun, Gi Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.389-394
    • /
    • 2016
  • MIMO (Multiple-Input-Multiple-Output) in underwater acoustic communication has distortion of received signal because of ISI (Inter-Symbol Interference) and crosstalk among transmitters. Time-reversal mirror was used for compensating of signal distortion, but it has a limit in eliminating crosstalk effectively. This paper proposes a time-reversal mirror based on GSC (Generalized Sidelobe Canceller) for removing crosstalk. The FAF05 (The Focused Acoustic Forecasting 05) experimental data has been used to verify the suggested method by comparison with the conventional time-reversal for communication performance, and it is demonstrated that the suggested method produces better communication performance results than conventional time-reversal.

Spatial Characteristics of Time-Reversal Pulse in Rayleigh and Ricean Fading Channels (레일레이 및 라이시안 페이딩 채널 환경 내의 시역전 펄스의 공간 특성)

  • Yoo, Hyung-Ha;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.648-656
    • /
    • 2009
  • We perform an analysis of the characteristics of the time-reversal pulse in Rayleigh or Ricean fading channel environments. We verify it by using Monte Carlo simulation. In a time-reversal system, each antenna in the time-reversal array receives signals from the transmitter and reverse the received signal in the time axis and then resend it to the original transmitter. We assume that the channel characteristics varies very slowly and the spatial separation between the antennas is not large. Hence the signals received by each antenna are correlated. In this paper, the effect of the correlation on the time-reversed pulse is examined, which includes the spatial properties of the time-reversal pulse such as the focus size, and spatial power distribution.

Algorithm and Experimental Verification of Underwater Acoustic Communication Based on Passive Time-Reversal Mirror (수동형 시역전에 기반한 수중음향통신 알고리즘 및 실험적 검증)

  • Eom, Min-Jeong;Kim, J.S.;Cho, Jung-Hong;Kim, Hoeyong;Sung, Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.392-399
    • /
    • 2014
  • The underwater acoustic communication is characterized by doubly spread channels, which are the delay spread due to multiple paths and the doppler spread due to environmental fluctuations or a moving platform. An equalizer is used to remove the inter-symbol interferences that the delay spread causes, but an equalizer doesn't use an acoustic environment such as a multipath. However, a passive time-reversal mirror is simpler than an equalizer because a matched filter is implemented numerically at the receiver structure along with one-way propagation. In this paper, a passive time-reversal mirror is applied to remove interferences due to a multipath in sea-going experimental data in East Sea in Oct. 2010 and improved communication performance is confirmed. The performance is verified by comparing the signal-to-interference plus noise ratio before/after passive time-reversal mirror. It is also performed independently of the passive time-reversal mirror and adaptive equalizer and the bit error rate is compared to verify the performance of underwater acoustic communication.

Analysis of passive time-reversal communication performance in shallow water with underwater sound channel (음향채널이 존재하는 천해에서의 수동 시역전 통신 성능 분석)

  • Choi, Kang-Hoon;Kim, Sunhyo;Choi, Jee Woong;Kim, Hyeonsu;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2018
  • A passive time-reversal technique can improve error performance of the underwater communication system by reducing influence of inter-symbol interferences, which is caused by a multipath channel response. The passive time-reversal communication system equipped with numerous receivers generally can obtain superior error performance since larger diversity gain can be obtained as the number of available received signal increased. In this paper, we analyze the optimal number and combination of receivers that can approximately achieve the best error performance when using the limited number of receivers. For this analysis, we use communication data collected during SAVEX15 (Shallow-water Acoustic Variability Experiment 2015) carried out in the south-western part of Jeju Island from May 14 to May 28, 2015. Analysis results show that there are depths of energy concentration due to the channel characteristics in which the underwater sound channel are present, and the passive time-reversal technique using the limited number of the receivers can derive near-optimal communication performance if the receivers for time-reversal processing are located at the depths where energy is concentrated.

Gram-Schmidt process based adaptive time-reversal processing (그람슈미트 과정 기반의 적응형 시역전 처리)

  • Donghyeon Kim;Gihoon Byun;J. S. Kim;Kee-Cheol Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.184-199
    • /
    • 2024
  • Residual crosstalk has been considered as a major drawback of conventional time-reversal processing in the case of simultaneous multiple focusing. In this paper, the Gram-Schmidt process is applied to time-reversal processing to mitigate crosstalk in ocean waveguides for multiple probe sources. Experimental data-based numerical simulations confirm that nulls can be placed at multiple locations, and it is shown that different signals can be simultaneously focused at different probe source locations, ensuring distortionless responses in terms of active time-reversal processing. This focusing property is also shown to be much less affected by a reduction in the number of receivers than the adaptive time-reversal mirror method. The proposed method is shown to be effective in eliminating crosstalk in passive multi-input multi-output communications using sea-going data.