DOI QR코드

DOI QR Code

Algorithm and Experimental Verification of Underwater Acoustic Communication Based on Passive Time-Reversal Mirror

수동형 시역전에 기반한 수중음향통신 알고리즘 및 실험적 검증

  • Received : 2014.07.08
  • Accepted : 2014.09.18
  • Published : 2014.11.30

Abstract

The underwater acoustic communication is characterized by doubly spread channels, which are the delay spread due to multiple paths and the doppler spread due to environmental fluctuations or a moving platform. An equalizer is used to remove the inter-symbol interferences that the delay spread causes, but an equalizer doesn't use an acoustic environment such as a multipath. However, a passive time-reversal mirror is simpler than an equalizer because a matched filter is implemented numerically at the receiver structure along with one-way propagation. In this paper, a passive time-reversal mirror is applied to remove interferences due to a multipath in sea-going experimental data in East Sea in Oct. 2010 and improved communication performance is confirmed. The performance is verified by comparing the signal-to-interference plus noise ratio before/after passive time-reversal mirror. It is also performed independently of the passive time-reversal mirror and adaptive equalizer and the bit error rate is compared to verify the performance of underwater acoustic communication.

수중음향통신에서는 다중경로에 의한 지연확산 채널과 조류로 인한 자연적 유동 혹은 인위적인 플랫폼 이동 등으로 도플러 확산 채널이 발생한다. 이로 인하여 발생하는 인접 심볼 간 간섭을 제거하기 위하여 등화기가 사용되고 있으나 다중 경로 등의 음향 환경정보를 사용하고 있지 않다. 반면 수동형 시역전의 경우 한 방향 전파과정으로 산출한 채널응답특성의 수치적 정합필터를 통하여 자기 등화를 수행하게 되므로 등화기보다 비교적 단순한 알고리즘으로 간섭을 제거하는 특성을 갖는다. 본 논문에서는 2010년 동해에서 수행한 통신 실험의 실측 데이터에 수동형 시역전을 적용하여 다중경로로 인한 간섭을 제거하고, 통신성능이 향상됨을 보이고자 한다. 이를 검증하기 위하여 수동형 시역전의 적용 전/후의 신호 대 간섭 잡음비를 비교하고 분석한다. 또한 수동형 시역전과 적응형 등화기의 알고리즘을 각각 독립적으로 수행하여 비트오류율을 산출하고 이를 비교하여 수동형 시역전의 통신성능을 검증한다.

Keywords

References

  1. D. B. Kilfoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE J. Ocean. Eng. 25, 4-27 (2000). https://doi.org/10.1109/48.820733
  2. R. J. Urick, Principles of Underwater Sound, Third Edition (Mcgraw-Hill, New York, 1983), pp. 11-147.
  3. A. C. Singer, J. K. Nelson, and S. S. Kozat, "Signal processing for underwater acoustic communications," IEEE Communications Magazine, 90-96 (2009).
  4. T. Melodia, H. Kulhandjian, L. C. Kuo, and E. Demirors, Advances in Underwater Acoustic Networking, in Mobile Ad Hoc Networking: Cutting Edge Directions, Second Edition (John Wiley & Sons, Hoboken, 2013), pp. 804-842.
  5. J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, New York, 2008), pp. 160-688.
  6. M. Stojanovic, J. A. Catipovic, and J. G. Proakis, "Phasecoherent digital communications for underwater acoustic channels," IEEE J. Ocean. Eng. 19, 100-111 (1994). https://doi.org/10.1109/48.289455
  7. J. C. Preisig, "Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment," J. Acoust. Soc. Am. 118, 263-278 (2005). https://doi.org/10.1121/1.1907106
  8. M. Stojanovic, J. Catipovic, and J. G. Proakis, "Adaptive multichannel combining and equalization for underwater acoustic communications," J. Acoust. Soc. Am. 94, 1621-1631 (1993). https://doi.org/10.1121/1.408135
  9. H. S. Kim, D. H. Choi, J. P. Seo, J. H. Chung, and S. Kim, "The experimental verification of adaptive equalizers with phase estimator in the East Sea" (in Korean), J. Acoust. Soc. Kr. 29, 229-236 (2010).
  10. G. S. Howe, P. S. D. Tarbit, O. R. Hinton, B. S. Sharif, and A. E. Adams, "Sub-seas acoustic remote communications utilising an adaptive receiving beamformer for multipath suppression," in Proc. Oceans '94, 313-316 (1994).
  11. G. F. Edelmann, T. Akal, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and H. C. Song, "An initial demonstration of underwater acoustic communication using time reversal," IEEE J. Ocean. Eng. 27, 602-609 (2002). https://doi.org/10.1109/JOE.2002.1040942
  12. M. J. Eom, J. S. Park, Y. H. Ji, and J. S. Kim, "Mitigation of inter-symbol interference in underwater acoustic communication using spatial filter" (in Korean), J. Acoust. Soc. Kr. 33, 48-53 (2014). https://doi.org/10.7776/ASK.2014.33.1.048
  13. M. J. Eom, J. S. Kim, J. H. Cho, and H. Y. Kim, "Performance improvement of unerwater acoustic communication based on passive time reversal mirror" (in Korean), in Proc. KAOSTS 2014, 1955-1957 (2014).
  14. M. Fink, "Time-reversal mirrors," J. Phys. D: Appl. Phys. 26, 1333-1350 (1993). https://doi.org/10.1088/0022-3727/26/9/001
  15. J. R. Yoon, M. K. Park, and Y. J. Ro, "Bit error parameters on passive phase conjugation underwater acoustic communication" (in Korean), J. Acoust. Soc. Kr. 24, 454-461 (2005).
  16. H. C. Song, "Bidirectional equalization for underwater acoustic communication," J. Acoust. Soc. Am. 131, 342-347 (2012). https://doi.org/10.1121/1.3695075
  17. H. C. Song, W. S. Hodkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akal, and M. Stevenson, "Spatial diversity in passive time reversal communications," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
  18. J. S. Kim, H. C. Song, and W. A. Kuperman, "Adpative timereversal mirror," J. Acoust. Soc. Am. 109, 1817-1825 (2006).
  19. S. H. Oh, H. S. Kim, J. S. Kim, J. H. Cho, J. H. Chung, and H. C. Song, "Performance analysis of underwater acoustic communication systems using underwater channel simulation tool" (in Korean), J. Acoust. Soc. Kr. 31, 373-383 (2012). https://doi.org/10.7776/ASK.2012.31.6.373
  20. H. S. Kim, J. P. Seo, J. Y. Kim, S. Kim, and J. H. Chung, "Equalizer mode selection method for improving bit error performance of underwater acoustic communication systems" (in Korean), J. Acoust. Soc. Kr. 31, 1-10 (2012). https://doi.org/10.7776/ASK.2012.31.1.001
  21. D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques (Prentice-Hall, Englewood cliffs, 1993), pp. 241-293.
  22. K. F. Riley, Mathematical Methods for the Physical Sciences: An Informal Treatment for Students of Physics and Engineering (Cambridge University Press, New York,1983), pp. 217.

Cited by

  1. Algorithm and experimental verification of underwater acoustic communication based on passive time reversal mirror in multiuser environment vol.35, pp.3, 2016, https://doi.org/10.7776/ASK.2016.35.3.167
  2. Performance improvement of underwater acoustic communication using ray-based blind deconvolution in passive time reversal mirror vol.35, pp.5, 2016, https://doi.org/10.7776/ASK.2016.35.5.375
  3. Performance analysis of underwater acoustic communication using time reversal mirror based on generalized sidelobe canceller vol.35, pp.5, 2016, https://doi.org/10.7776/ASK.2016.35.5.389
  4. Estimation of source signal and channel response using ray-based blind deconvolution technique for Doppler-shifted underwater channel vol.35, pp.5, 2016, https://doi.org/10.7776/ASK.2016.35.5.331