• Title/Summary/Keyword: 시스템 자코비안 행렬

Search Result 8, Processing Time 0.028 seconds

Torque Optimizing Control of Redundant Manipulators (여유자유도 로봇을 위한 최적토크제어)

  • Lee, Bo-Hyun;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.758-760
    • /
    • 2000
  • 본 논문에서는 기구적으로 여유자유도를 갖는 로봇 매니퓰레이터 시스템을 대상으로 하여, 로봇 랜드가 주어진 제적을 추종할 수 있는 관절 토크를 유도하기 위한 동적제어 식을 새로이 구성하고, 동적제어식을 만족하는 관절 토크 해들 중에 국소적으로 토크의 크기를 최적화하는 해를 사용하는 최적토크제어를 제안한다. 최적토크를 구하는 문제에 있어 관절 토크에 가중치 행렬을 적용하여 각 관절 토크의 최대 크기의 비를 반영할 수 있도록 한다. 또한, 로봇 핸드 자코비안-관성 역행렬의 영공간에서 나타나는 영공간 관절 속도를 정의하고 이러한 영공간 관절속도가 최적토크제어에서는 로봇 시스템을 불안정하게 할 수 있다는 것을 보인다. 최적토크 제어의 이러한 문제를 해결하기 위하여 영공간 관절 속도를 제거하기 위한 소산토크를 유도하고, 최적토크제어식에 소산토크를 추가하는 방법을 제안한다. 평면형 3-자유도 로봇을 대상으로 한 모의실험을 통해 제안된 제어 방법의 우수성을 검증하고 그 결과를 분석한다.

  • PDF

A Study on the Real-Time Analysis of a 6×6 Autonomous Vehicle (6×6 자율주행 차량의 실시간 해석을 위한 연구)

  • Cho, Du-Ho;Lee, Jung-Han;Yi, Ki-Chang;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1433-1441
    • /
    • 2009
  • In multibody dynamic analysis, one of the most important problems is to reduce computation times for real-time simulation. This paper presents the derivation procedure of equations of motion of a 6${\times}$6 autonomous vehicle in terms of chassis local coordinates which do not require coordinates transformation matrix to enhance efficiency for real-time dynamic analysis. Also, equations of motion are derived using the VT(velocity transformation) technique and symbolic computation method coded by MATLAB. The Jacobian matrix of the equations of motion of a system is derived from symbolic operations to apply the implicit integration method. The analysis results were compared with ADAMS results to verify the accuracy and approve the feasibility of real time analysis.

Stability Analysis of TSK Fuzzy Systems (TSK퍼지 시스템의 안정도 해석)

  • 강근택;이원창
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.53-61
    • /
    • 1998
  • This paper describes the stability analysis of TSK (Takagi-Sugeno-Kang) fuzzy systems which can represent a large class of nonlinear systems with good accuracy. A TSK fuzzy model consists of TSK fuzzy rules and the consequent of each fuzzy rule is a linear input-output equation with a constant term. There may exist equilibrium points more than one in the TSK fuzzy model and each equilibrium point rnay also have different nature of stability. The local stability of an equilibrium point is determined by eigenvalues of the Jacobian matrix of the linearized TSK fuzzy model around the equilibrium point. Stability of both the continuous-time and the discrete-time systems is analyzed in this paper.

  • PDF

The Performance Verification of Optimal State Feedback Controllers via The Inverted Pendulum (도립진자 시스템을 통한 최적 상태 되먹임 제어기의 성능 검증)

  • Lee, Jong-Yeon;Lee, Bo-Ra;Hyun, Chang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.768-773
    • /
    • 2010
  • This paper presents the performance verification of the optimal state feedback controller via inverted pendulum systems. The proposed method generates the optimal control inputs satisfying both the constrained input and the performance specification. In addition, it reduces the steady-state error by adopting the integral control technique. In order to verify the performance of the proposed method, we apply both the proposed method and the general state feedback control to an inverted pendulum, CEM-IP-01 in the experiment.

Airspeed Estimation of Course Correction Munitions by Using Extended Kalman Filter (확장 칼만필터를 이용한 탄도수정탄의 대기속도 추정)

  • Sung, Jaemin;Kim, Byoung Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.405-412
    • /
    • 2015
  • This paper represents a filter design to estimate the airspeed of a spin-stabilized, trajectory-correctible artillery ammunition. Due to the limited power and space in operational point of view, the airspeed sensor is not installed, and thus the airspeed need to be estimated using limited sensor measurements. The only IMU measurements(three-axis specific forces and angular rates) are used in this application. The extended Kalman filter algorithm is applied since a linear filter can not cover the its wide operational range in airspeed and altitude. In the implementation of the EKF, the state and measurement equations are transformed into the no-roll frame for simple form of Jacobian matrix. The simulation study is conducted to evaluate the performance of the filter under various environment conditions of sensor noise and wind turbulence. In addition, the effect of the choice in filter design parameters, i.e. process error covariance matrices is analyzed on the performance of the estimation of airspeed and angular rates.

Use of Parametric Generalized Coordinates for Kinematic Constraint Formulation of Low Degree-of-Freedom Joints (저자유도 조인트의 구속조건 생성을 위한 파라메트릭 일반좌표 이용)

  • Lee, Jung Keun;Lee, Chul Ho;Bae, Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1261-1267
    • /
    • 2013
  • In multibody mechanical systems, low-degree-of-freedom (DOF) joints such as revolute and translational joints are much more frequently used than high-DOF joints. In order to formulate kinematic constraint equations, especially for low-DOF joints, in an efficient and systematic manner, this paper presents a parametric generalized coordinate formulation as a new approach for describing constraint equations. In the proposed approach, joint constraint equations are formulated in terms of a mixed set of Cartesian and parametric generalized coordinates, which drastically reduces the complexity and computational cost of the partial derivatives of the constraints such as the constraint Jacobian. The proposed formulation is validated using a simple cylinder-crank system with an implicit integrator.

Coupled Dynamic Analyses of Underwater Tracked Vehicle and Long Flexible Pipe (유연관-해저주행차량 연성 동적거동 해석)

  • Hong, Sup;Kim, Hyung-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.237-245
    • /
    • 2008
  • We developed a computational method on coupled dynamics of tracked vehicle on seafloor and long flexible pipe. The tracked vehicle is modeled as rigid-body vehicle, and the linked flexible pipe is discretized according to a lumped-parameter model. The equations of motion of the rigid-body vehicle on the soft seafloor are combined with the governing equations of flexible pipe dynamics. Four Euler parameters method is used to express the orientations of the vehicle and the flexible pipe. In order to solve the nonlinear coupled dynamics of vehicle and flexible pipe an incremental-iterative formulation is implemented. For the time-domain integration $Newmark-\beta$ method is adopted. The total Jacobean matrix has been derived based on the incremental-iterative formulation. The interactions between the dynamics of flexible pipe and the mobility of the tracked vehicle on soft seafloor are investigated through numerical simulations in time domain.

A Study on a Sliding Mode Control Algorithm for Dynamic Positioning System of a Vessel (선박의 동적위치유지 시스템을 위한 Sliding Mode 제어 연구)

  • Young-Shik Kim;Jang-Pyo Hong
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.256-270
    • /
    • 2023
  • In this study, a sliding mode (SM) controller for dynamic positioning (DP) was specifically designed for a turret connection operation of a ship or an offshore structure in which an arbitrary point on the structure could be controlled as the motion center instead of the center of mass. The SM controller allows control of the arbitrary point and provides capability to manage uncertainties in the dynamics of ships and offshore structures, external forces caused by unknown changing marine environments, and transient performance of DP systems. The Jacobian matrix included in kinematic equations of the controlled object was modified to design the SM controller to control based on an arbitrary point of ships or offshore structures. To ensure robustness of the controller, the Lyapunov stability theory was applied in the design of the SM controller. In general, for robustness in DP control, gain scheduling based on a proportional-derivative (PD) control algorithm is employed. However, finding appropriate gains for gain scheduling complicates the application of DP systems. Therefore, in this study, the SM control algorithm was considered to mitigate the complexity of the DP controller for ships and offshore structures. To validate the proposed SM control algorithm, time-domain simulations were conducted and utilized to evaluate the performance of the control algorithm. The effectiveness of the proposed SM controller was assessed by comparing simulation results with results of a conventional PD control algorithm applied in DP control.