DOI QR코드

DOI QR Code

A Study on a Sliding Mode Control Algorithm for Dynamic Positioning System of a Vessel

선박의 동적위치유지 시스템을 위한 Sliding Mode 제어 연구

  • Young-Shik Kim (Korea Research Institute of Ships and Ocean Engineering) ;
  • Jang-Pyo Hong (Korea Research Institute of Ships and Ocean Engineering)
  • 김영식 (선박해양플랜트연구소) ;
  • 홍장표 (선박해양플랜트연구소 )
  • Received : 2022.12.28
  • Accepted : 2023.08.15
  • Published : 2023.08.31

Abstract

In this study, a sliding mode (SM) controller for dynamic positioning (DP) was specifically designed for a turret connection operation of a ship or an offshore structure in which an arbitrary point on the structure could be controlled as the motion center instead of the center of mass. The SM controller allows control of the arbitrary point and provides capability to manage uncertainties in the dynamics of ships and offshore structures, external forces caused by unknown changing marine environments, and transient performance of DP systems. The Jacobian matrix included in kinematic equations of the controlled object was modified to design the SM controller to control based on an arbitrary point of ships or offshore structures. To ensure robustness of the controller, the Lyapunov stability theory was applied in the design of the SM controller. In general, for robustness in DP control, gain scheduling based on a proportional-derivative (PD) control algorithm is employed. However, finding appropriate gains for gain scheduling complicates the application of DP systems. Therefore, in this study, the SM control algorithm was considered to mitigate the complexity of the DP controller for ships and offshore structures. To validate the proposed SM control algorithm, time-domain simulations were conducted and utilized to evaluate the performance of the control algorithm. The effectiveness of the proposed SM controller was assessed by comparing simulation results with results of a conventional PD control algorithm applied in DP control.

본 연구에서는 선박 또는 해양구조물에 설치되는 터렛(Turret)과 같이 제어 대상의 무게 중심 주변이 아닌 임의 지점을 운동 중심으로 선정하여 제어할 수 있는 동적위치유지(Dynamic positioning; DP)용 슬라이딩모드(Sliding mode) 제어기를 연구하였다. 이러한 슬라이딩모드 제어기는 선박 및 해양구조물 동역학 모델의 불확실성, 시공간에서 변화하는 미지의 해양환경에 의한 외력, DP 제어시스템의 과도 성능을 고려한 제어가 가능하다. 선박 및 해양구조물의 임의 지점을 기준으로 제어하기 위해 제어 대상의 기구학 방정식에 포함되는 자코비안(Jacobian) 행렬을 수정하여 슬라이딩모드 제어기를 설계하였다. 제어기의 강건성(Robustness)을 확보하기 위해 슬라이딩모드 제어기 설계에 리아프노프(Lyapunov) 안정도 판별 이론을 적용하였다. 일반적으로 DP 제어에서 제어기의 강건성 확보를 위해 PD(Proportional derivative) 제어 알고리즘 기반의 이득 스케줄링(Gain scheduling)을 사용한다. 그러나 이득 스케줄링을 적용하기 위한 적절한 이득을 찾는 것은 DP 시스템 적용을 복잡하게 만든다. 따라서 본 연구에서는 이러한 선박 및 해양구조물 DP 제어기의 복잡성을 해소하기 위해 슬라이딩모드 제어 알고리즘을 고려하였다. 제안된 슬라이딩모드 제어 알고리즘의 유효성을 검증하기 위해 시간 영역 시뮬레이션을 구현하였으며, 제어 알고리즘의 성능평가에 활용되었다. 제안된 슬라이딩모드 제어기의 유효성 검토를 위해 일반적인 PD 제어 알고리즘을 적용한 DP 제어 시뮬레이션 결과와 비교하였다.

Keywords

Acknowledgement

본 논문은 해양수산부의 국가연구개발사업인 "전기추진 차도선 및 이동식 전원공급시스템 개발" 과제(20200469-01, PMS4980)와 선박해양플랜트연구소 주요사업인 "친환경 선박 연료 신뢰성·안전성 평가기술 개발" 과제(PES4301)의 지원으로 수행되었음을 밝히며, 연구비 지원에 감사드립니다.

References

  1. Balchen, J. G., Jenssen, N. A. and Saelid, S.(1976), "Dynamic positioning using Kalman filtering and optimal control theory", IFAC/IFIP symposium on automation in offshore oil field operation, Vol. 183, p. 186. 
  2. Choi, Y. R., Hong, S. Y. and Choi, H. S.(2001), "An analysis of second-order wave forces on floating bodies by using a higher-order boundary element method", Ocean Engineering, Vol. 28, pp. 117-138.  https://doi.org/10.1016/S0029-8018(99)00064-5
  3. Fossen, T. I.(2011), Handbook of marine craft hydrodynamics and motion control, John Wiley & Sons. 
  4. Fossen, T. I. and Strand, J. P.(2001), "Nonlinear passive weather optimal positioning control (WOPC) system for ships and rigs: experimental results", Automatica, Vol. 37, pp. 701-715.  https://doi.org/10.1016/S0005-1098(01)00006-1
  5. Grimble, M., Patton, R. and Wise, D.(1979, September), "The design of dynamic ship positioning control systems using extended Kalman filtering techniques", OCEANS'79, pp. 488-497. 
  6. Jeon, M. R., Kim, H. S., Kim, J. H., Kim, S. J., Song, S. S. and Kim, S. H.(2017), "A Study on the Dynamic Positioning Control Algorithm Using Fuzzy Gain Scheduling PID Control Theory", Journal of the Society of Naval Architects of Korea, Vol. 54, pp. 102-112.  https://doi.org/10.3744/SNAK.2017.54.2.102
  7. Khalil, H. K. and Grizzle, J. W.(2002), Nonlinear systems (Vol. 3). Upper Saddle River, NJ, Prentice hall. 
  8. Kim H. S., Sohn K. H. and Lee S. K.(2011), "A study on the sliding mode controller of Manta type UUV", Proceedings of the Korean Institute of Navigation and Port Research Conference. Korean Institute of Navigation and Port Research, 2011. 
  9. Kim, J. Y.(2006), "Controller design for an autonomous underwater vehicle using estimated hydrodynamic coefficients", Journal of Ocean Engineering and Technology, Vol. 20, pp. 7-17. 
  10. Kim, Y. S.(2018). "Modelling and experimental investigation of icevaning control for arctic offshore vessels". 
  11. Kim, Y. S., Kim, Y. H., Sung, H. G. and Kim, J.(2013), "A Robust Dynamic Positioning Control Algorithm and Its Validation through Experiment and Numerical Simulation", The 23rd International Offshore and Polar Engineering Conference(ISOPE). 
  12. Kim, Y. S., Kim, J. and Sung, H. G.(2015), "A Task Space based Weathervaning Control for Offshore Vessels", The 25th International Offshore and Polar Engineering Conference(ISOPE). 
  13. Kim, Y. S., Lee, H. and Kim, J.(2017), "Coordinated weathervaning control of two surface vessels in a tandem configuration", Ocean Engineering, Vol. 130, pp. 142-155.  https://doi.org/10.1016/j.oceaneng.2016.11.046
  14. Lee, D. Y. and Ha, M. G.(2003), "A study on the Design Parameters of Controller for Dynamic Positioning System', Journal of the Society of Naval Architects of Korea, Vol. 40, pp. 8-19.  https://doi.org/10.3744/SNAK.2003.40.1.008
  15. Lee, P. M., Lee, S. M. and Hong, S. Y.(1988), "Optimal Control of Dynamic Positioned Vessel Using Kalman Filtering Techniques", Journal of Ocean Engineering Technology, Vol. 2, pp. 237-245. 
  16. Lee S. J., Park H. and Hong K. S.(2005), "Sliding -Mode Control of Cranes ", Journal of Korean Navigation an d Port Research, Vol. 29, pp 747-753.  https://doi.org/10.5394/KINPR.2005.29.8.747
  17. Shi, Y., Shen, C., Fang, H. and Li, H.(2017), "Advanced control in marine mechatronic systems: A survey", IEEE/ASME Transactions on Mechatronics, Vol. 22, pp. 1121-1131.  https://doi.org/10.1109/TMECH.2017.2660528
  18. Sorensen, A. J.(2011), "A survey of dynamic positioning control systems", Annual reviews in control, Vol. 35, pp. 123-136.  https://doi.org/10.1016/j.arcontrol.2011.03.008
  19. Sorensen, A. J.(2012). Marine control systems. Propulsion and Motion Control of Ships and Ocean Structures, 3. 
  20. Steinbeck, J.(1961), High drama of bold thrust through ocean floor, Life Magazine. 
  21. Tannuri, E. A., Agostinho, A. C., Morishita, H. M. and Moratelli, L.(2010), "Dynamic positioning systems: An experimental analysis of sliding mode control', Control Engineering Practice, Vol. 18, pp. 1121-1132.  https://doi.org/10.1016/j.conengprac.2010.06.007
  22. Tannuri, E. A., Donha, D. C. and Pesce, C. P.(2001), "Dynamic positioning of a turret moored FPSO using sliding mode control", International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, Vol. 11, pp. 1239-1256.  https://doi.org/10.1002/rnc.604
  23. The Math Works, Inc. MATLAB/Simulink. 2022a. www.mathworks.com/. 
  24. Yoo, H. R., Kim, H. S. and Kim, S. B.(1996), "Dynamic Positioning Control of Floating Platform using H∞ Control Method", Journal of Ocean Engineering. Technology, Vol. 10, pp. 153-161. 
  25. Xu, Z. Z., Kim, H. H., Park, G. K. and Nam, T. K.(2018), "Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles", Journal of Korean Navigation and Port Reserch, Vol. 42, pp. 87-96.