• Title/Summary/Keyword: 시공간 경향

Search Result 176, Processing Time 0.02 seconds

Analysis of living population characteristics to measure urban vitality - Focusing on mobile big data - (도시활력 측정을 위한 생활인구 특성 분석 - 이동통신 빅데이터를 중심으로 -)

  • Yoko Kamata;Kwang Woo NAM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.173-187
    • /
    • 2023
  • In an era of population decline, depopulated regions facing challenges in attracting inbound population migration must enhance urban vitality through the attraction of living populations. This study focuses on Busan, a city experiencing population decline, comparing the spatiotemporal distribution characteristics of registered residents and living populations in various administrative districts (Eup-Myeon-Dong) using mobile communication big data. Administrative districts are typified based on population change patterns, and regional characteristics are analyzed using indicators related to urban decline and vitality. Spatiotemporal distribution analysis reveals generally similar density patterns between registered residents and living populations; however, a distinctive feature is observed in the city center areas where the density of registered residents is low, while the density of living populations is high. Divergent trends in spatial patterns of change between registered residents and living populations show clusters of registered population decline in low-density areas and clusters of living population decline in high-density areas. Areas adjacent to declining living populations exhibit large clusters of population changes, indicating a spillover effect from high-density to neighboring areas. Typification results reveal that, even in areas with a decline in registered residents, there is active population influx due to commuting or visiting. These areas sustain an increase in the number of businesses, confirming the presence of industrial and economic growth. However, approximately 47% of administrative districts in Busan are experiencing a decline in both registered residents and living populations, indicating ongoing regional decline. Urgent measures are needed for enhancing urban vitality. The study emphasizes the necessity of utilizing living population data as an urban planning indicator, considering the increasing limit distance of urban activities and growing interregional interaction due to advancements in transportation and communication.

Rainfall Variations of Temporal Characteristics of Korea Using Rainfall Indicators (강수지표를 이용한 우리나라 강수량의 시간적인 특성 변화)

  • Hong, Seong-Hyun;Kim, Young-Gyu;Lee, Won-Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study suggests the results of temporal and spatial variations for rainfall data in the Korean Peninsula. We got the index of the rainfall amount, frequency and extreme indices from 65 weather stations. The results could be easily understood by drawing the graph, and the Mann-Kendall trend analysis was also used to determine the tendency (up & downward/no trend) of rainfall and temperature where the trend could not be clear. Moreover, by using the FARD, frequency probability rainfalls could be calculated for 100 and 200 years and then compared each other value through the moment method, maximum likelihood method and probability weighted moments. The Average Rainfall Index (ARI) which is meant comprehensive rainfalls risk for the flood could be obtained from calculating an arithmetic mean of the RI for Amount (RIA), RI for Extreme (RIE), and RI for Frequency (RIF) and as well as the characteristics of rainfalls have been mainly classified into Amount, Extremes, and Frequency. As a result, these each Average Rainfall Indices could be increased respectively into 22.3%, 26.2%, and 5.1% for a recent decade. Since this study showed the recent climate change trend in detail, it will be useful data for the research of climate change adaptation.

Sediment Characteristics of the Beach and Subtidal Zone in Shindu Marine Protected Area (신두 해양생태계보호구역 해빈과 조하대의 퇴적물 특성)

  • Shin, Young Ho;Seo, Jong Cheol
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.6
    • /
    • pp.812-832
    • /
    • 2014
  • We analyzed physical and chemical properties of sediments from 20 subtidal points and 9 beach points to define sedimentary environment between summer and winter of Shindu Marine Protected Area. Means of particle size in summer were generally finer than winter's. There was distinctively spatial pattern that particle sizes became increasingly fine as west direction and apart from beach in summer, but this pattern was not shown in winter. Coarse sediments were prevailed in winter. To explain these patterns, we propose possible two causes which are spatially different water depth condition related with seasonal wave climate or fine sediment input from an estuary located in south of this area during summer rainy season. Contents of exchangeable cations of sediment in summer were shown $Na^+$>$Ca^{2+}$>$Mg^{2+}$>$K^+$ in order, but those of winter were shown $Na^+$>$Mg^{2+}{\fallingdotseq}Ca^{2+}$>$K^+$. Contents of $Na^+$, $Mg^{2+}$, and $K^+$ were related with contents of fine sediment and showed high correlation in each other. These relations were not shown between $Ca^{2+}$ and others. Our results show that there are spatio-temporal unique sedimentary environments between subtidal zone, beach, and dune near Shindu Marine Protected Area. Therefore, we should consider these spatio-temporal patterns for environmentally sound management of Shindu coastal system.

  • PDF

Zooplankton Community and Distributions of Copepods in Relation to Eutrophic Evaluation in Chinhae Bay (진해만 수질 환경과 동물플랑크톤 군집 및 요각류 분포 특성)

  • KANG Young-Shil;PARK Joo-Suck;LEE Sam-Seuk;KIM Hak-Gyoon;LEE Phil-Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.415-430
    • /
    • 1996
  • Spatio-temporal variations in zooplankton community and ropepod indicator species were investigated along with the interaction between zooplankton distribution and environmental factors in Chinhae Bay. Zooplankton samples were monthly collected at 7 stations from February to September in 1993. A NORPAC net was vertically hauled from bottom to surface, At the same station, environmental factors such as temperature, salinity and COD (chemical oxygen demand) were measured at two different water layers, surface and bottom. In August and September, salinity declined below 30.00‰ , while eutrophic parameters such as COD showed the higher concentrations than those in other months, with higher concentrations at inner bay stations. Salinities were, however, higher at bay mouth areas. These distributional patterns were believed to be caused by input and dispersion of organic matters from nearby land. Zooplankton communities were composed of 7~14. Of these, Noctiluca scintillans was predominant and occupied 90.6‰ of total zooplankton abundance. Cladocera and Copepoda were secondly abundant taxa. Among 6 to 10 copepod species appeared, Acartia omorii and A. hudsonics were most common species during the survey months except March and September. Species diversities were greater, in general, at inner bay than outer bay. The lowest diversity index was observed in February, while the highest in July. Cluster analysis could divide the study area into 2 or 4 zones for each month. Zone 1, mouth area of the bay, was characterized by the influence of offshore waters. Zone II was mixing area. Zone III and IV seemed to be affected by nearby land.

  • PDF

Characteristics and Trends of Spatiotemporal Distribution of Frost Occurrence in South Korea for 21 Years (21년간 한국의 서리발생 시·공간 분포 특성과 경향)

  • Jo, Eunsu;Kim, Hae-Min;Shin, Ju-Young;Kim, Kyu Rang;Lee, Yong Hee;Jee, Joonbum
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.83-94
    • /
    • 2022
  • In order to actively prepare to frost damage that occurs in the process of growing crops, the spatial and temporal distribution of frost occurrence in South Korea was derived using frost observation data from 20 regions over the past 21 years (2000~2020). The main products are the number of frost days, first frost day, and last frost day by region. And the climatic trends of these results were identified by performing the Mann-Kendall trend test and Sen's slope estimator. In South Korea, a lot of frost occurs in the inland area to the west of the Taebaek and Sobaek Mountains. Relatively closer to the coastal area, the number of frost days is small, the first frost day is slow, and the last frost day is early. The east coast region has fewer frost days, the first frost day is later, and the last frost day is earlier than the west coast region. The southern sea, the southeastern sea region, and the island region rarely experience frost. As a result of the annual time series trend analysis, although South Korea is a country where climate warming is progressing, there was no trend in reducing the number of frost days and slowing the first frost day, and it was found that the last frost day is delayed by 0.5 days per year.

Spatiotemporal Variations of Seawater Quality due to the Inflow of Discharge from Nakdong River Barrage (낙동강 하구둑 방류수에 의한 하구역 수질의 시공간적 변화)

  • Yoon, H.S.;Park, S.;Lee, I.C.;Kim, H.T.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.78-85
    • /
    • 2008
  • We estimated the pollutant loads for the last 3 years based on the daily discharge at the Nakdong River dam(barrage) and spatiotemporal characteristics of seawater quality in the Nakdong river estuary to investigate the correlation between the pollutant load inflow rate and seawater quality. The main results from this research are summarized as follows. (1) The total discharge at the Nakdong River dam dam the last 11 years has been $224,576.8{\times}10^6m^3/day$. The discharge figures show that the maximum discharge occurs in August with $52,634.2{\times}10^6 m^3/day$ (23.4% of the year's volume), followed by July and Sep. in that order with 23.1 and 17%, respectively. (2) The pollutant load influx from the Nakdong River dam was composed of 307,591.3COD-kg/day, 128.746.1 TN-kg/day, and 107,625.8 TP-kg/day. (3) The surface temperature in the Nakdong River estuary was about $2.137^{\circ}C$ higher than that of the lower layer. The salinity of the lower layer was 2.209%o higher than that of the ocean surface. The salinity of the ocean surface decreased by up to 19.593%o due to the inflow of the discharge at the Nakdong River dam. (4) DO, COD, TN, and SS concentration levels tended to be higher at the ocean surface than in lower layers, whereas the reverse was true for TP. (5) The water mass at the ocean's surface and in the lower layers during the drought and flood seasons tended to be separated by the difference in densities due to the freshwater inflow.

  • PDF

Analysis of Traffic Accidents Injury Severity in Seoul using Decision Trees and Spatiotemporal Data Visualization (의사결정나무와 시공간 시각화를 통한 서울시 교통사고 심각도 요인 분석)

  • Kang, Youngok;Son, Serin;Cho, Nahye
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.233-254
    • /
    • 2017
  • The purpose of this study is to analyze the main factors influencing the severity of traffic accidents and to visualize spatiotemporal characteristics of traffic accidents in Seoul. To do this, we collected the traffic accident data that occurred in Seoul for four years from 2012 to 2015, and classified as slight, serious, and death traffic accidents according to the severity of traffic accidents. The analysis of spatiotemporal characteristics of traffic accidents was performed by kernel density analysis, hotspot analysis, space time cube analysis, and Emerging HotSpot Analysis. The factors affecting the severity of traffic accidents were analyzed using decision tree model. The results show that traffic accidents in Seoul are more frequent in suburbs than in central areas. Especially, traffic accidents concentrated in some commercial and entertainment areas in Seocho and Gangnam, and the traffic accidents were more and more intense over time. In the case of death traffic accidents, there were statistically significant hotspot areas in Yeongdeungpo-gu, Guro-gu, Jongno-gu, Jung-gu and Seongbuk. However, hotspots of death traffic accidents by time zone resulted in different patterns. In terms of traffic accident severity, the type of accident is the most important factor. The type of the road, the type of the vehicle, the time of the traffic accident, and the type of the violation of the regulations were ranked in order of importance. Regarding decision rules that cause serious traffic accidents, in case of van or truck, there is a high probability that a serious traffic accident will occur at a place where the width of the road is wide and the vehicle speed is high. In case of bicycle, car, motorcycle or the others there is a high probability that a serious traffic accident will occur under the same circumstances in the dawn time.

Temporal and Spatial Distributions of Basic Water Quality in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역에서 기초수질의 시공간적 분포특성)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Oh, Young-Taek;Heo, Woo-Myoung;Lee, Yun-Kyoung;Park, Yong-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.206-215
    • /
    • 2008
  • Temporal and spatial distributions of salinity, temperature, dissolved oxygen (DO), and turbidity were investigated at seven sites in the upper regions of brackish Lake Sihwa with a limited water exchange, from March to October 2005. During the study period, salinity and temperature varied $0.1{\sim}29.9\;psu$ and $4.7{\sim}28.1^{\circ}C$, respectively, depending on seasons and sites sampled. A distinct halocline profile showing the maximum density gradient (difference over $20\;psu\;m^{-1}$ between surface and bottom layers) was observed during the rainy season, due to the decrease of salinity in surface layers by freshwater inflow. This result implies that rainfall event is the important factor forming the halocline. On the other hand, the depth and location of haloeline varied with the amount of seawater through the sluice gates and the operation systems (inflow or outflow). High DO (over 300% saturation) was observed at surface layer above the halocline in April when red tide occurred, whereas low DO (below 20% saturation) was at the bottom layer below the halocline in the rainy season. Turbidity ranged $1.5{\sim}80.3\;NTU$ showing the maximum turbidity at the layers above or upper the halocline. As a result, the distributions of DO and turbidity in the upper regions of brackish Lake Sihwa were largely affected by the variation of salinity. Also, when the halocline was formed, the water quality between upper and lower water layers may be expected completely different. This study suggests that the physicochemical characteristics of water in the brackish regions are closely associated with the causes of eutrophication such as red tide and DO deficit.

Temporal and Spatial Characteristics of Sediment Yields from the Chungju Dam Upstream Watershed (충주댐 상류유역의 유사 발생에 대한 시공간적인 특성)

  • Kim, Chul-Gyum;Lee, Jeong-Eun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.887-898
    • /
    • 2007
  • A physically based semi-distributed model, SWAT was applied to the Chungju Dam upstream watershed in order to investigate the spatial and temporal characteristics of watershed sediment yields. For this, general features of the SWAT and sediment simulation algorithm within the model were described briefly, and watershed sediment modeling system was constructed after calibration and validation of parameters related to the runoff and sediment. With this modeling system, temporal and spatial variation of soil loss and sediment yields according to watershed scales, land uses, and reaches was analyzed. Sediment yield rates with drainage areas resulted in $0.5{\sim}0.6ton/ha/yr$ excluding some upstream sub-watersheds and showed around 0.51 ton/ha/yr above the areas of $1,000km^2$. Annual average soil loss according to land use represented the higher values in upland areas, but relatively lower in paddy and forest areas which were similar to the previous results from other researchers. Among the upstream reaches, Pyeongchanggang and Jucheongang showed higher sediment yields which was thought to be caused by larger area and higher fraction of upland than other upstream sub-areas. Monthly sediment yields at the main outlet showed same trend with seasonal rainfall distribution, that is, approximately 62% of annual yield was generated during July to August and the amount was about 208 ton/yr. From the results, we could obtain the uniform value of sediment yield rate and could roughly evaluate the effect of soil loss with land uses, and also could analyze the temporal and spatial characteristics of sediment yields from each reach and monthly variation for the Chungju Dam upstream watershed.

Study of Spatiotemporal Variations and Origin of Nitrogen Content in Gyeongan Stream ( 경안천 내 질소 함량의 시공간적 변화와 기원 연구)

  • Jonghoon Park;Sinyoung Kim;Soomin Seo;Hyun A Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.139-153
    • /
    • 2023
  • This study aimed to understand the spatiotemporal variations in nitrogen content in the Gyeongan stream along the main stream and at the discharge points of the sub-basins, and to identify the origin of the nitrogen. Field surveys and laboratory analyses, including chemical compositions and isotope ratios of nitrate and boron, were performed from November 2021 to November 2022. Based on the flow duration curve (FDC) derived for the Gyeongan stream, the dry season (mid-December 2021 to mid-June 2022) and wet season (mid-June to early November 2022) were established. In the dry season, most samples had the highest total nitrogen(T-N) concentrations, specifically in January and February, and the concentrations continued to decrease until May and June. However, after the flood season from July to September, the uppermost subbasin points (Group 1: MS-0, OS-0, GS-0) where T-N concentrations continually decreased were separated from the main stream and lower sub-basin points (Group 2: MS-1~8, OS-1, GS-1) where concentrations increased. Along the main stream, the T-N concentration showed an increasing trend from the upper to the lower reaches. However, it was affected by those of the Osan-cheon and Gonjiamcheon, the tributaries that flow into the main stream, resulting in respective increases or decreases in T-N concentration in the main stream. The nitrate and boron isotope ratios indicated that the nitrogen in all samples originated from manure. Mechanisms for nitrogen inflow from manure-related sources to the stream were suggested, including (1) manure from livestock wastes and rainfall runoff, (2) inflow through the discharge of wastewater treatment plants, and (3) inflow through the groundwater discharge (baseflow) of accumulated nitrogen during agricultural activities. Ultimately, water quality management of the Gyeongan stream basin requires pollution source management at the sub-basin level, including its tributaries, from a regional context. To manage the pollution load effectively, it is necessary to separate the hydrological components of the stream discharge and establish a monitoring system to track the flow and water quality of each component.