DOI QR코드

DOI QR Code

Analysis of Traffic Accidents Injury Severity in Seoul using Decision Trees and Spatiotemporal Data Visualization

의사결정나무와 시공간 시각화를 통한 서울시 교통사고 심각도 요인 분석

  • Kang, Youngok (Dept of Social Studies, Ewha Womans University) ;
  • Son, Serin (Dept of Social Studies, Ewha Womans University) ;
  • Cho, Nahye (Dept of Social Studies, Ewha Womans University)
  • 강영옥 (이화여자대학교 사범대학 사회과교육과 지리전공) ;
  • 손세린 (이화여자대학교 사범대학 사회과교육과) ;
  • 조나혜 (이화여자대학교 사범대학 사회과교육과)
  • Received : 2017.10.10
  • Accepted : 2017.12.08
  • Published : 2017.12.10

Abstract

The purpose of this study is to analyze the main factors influencing the severity of traffic accidents and to visualize spatiotemporal characteristics of traffic accidents in Seoul. To do this, we collected the traffic accident data that occurred in Seoul for four years from 2012 to 2015, and classified as slight, serious, and death traffic accidents according to the severity of traffic accidents. The analysis of spatiotemporal characteristics of traffic accidents was performed by kernel density analysis, hotspot analysis, space time cube analysis, and Emerging HotSpot Analysis. The factors affecting the severity of traffic accidents were analyzed using decision tree model. The results show that traffic accidents in Seoul are more frequent in suburbs than in central areas. Especially, traffic accidents concentrated in some commercial and entertainment areas in Seocho and Gangnam, and the traffic accidents were more and more intense over time. In the case of death traffic accidents, there were statistically significant hotspot areas in Yeongdeungpo-gu, Guro-gu, Jongno-gu, Jung-gu and Seongbuk. However, hotspots of death traffic accidents by time zone resulted in different patterns. In terms of traffic accident severity, the type of accident is the most important factor. The type of the road, the type of the vehicle, the time of the traffic accident, and the type of the violation of the regulations were ranked in order of importance. Regarding decision rules that cause serious traffic accidents, in case of van or truck, there is a high probability that a serious traffic accident will occur at a place where the width of the road is wide and the vehicle speed is high. In case of bicycle, car, motorcycle or the others there is a high probability that a serious traffic accident will occur under the same circumstances in the dawn time.

본 연구는 교통사고 가운데 인적피해를 동반한 교통사고에 대해 교통사고의 시공간적 특성과 교통사고 심각도에 영향을 미치는 주요인을 분석하고자 하였다. 이를 위해 2012년부터 2015년 까지 4년간 서울시에서 발생한 교통사고 데이터 가운데 인적사고가 있는 데이터를 교통사고 심각도에 따라 경상, 중상, 사망 교통사고로 분류하고, 교통사고의 시공간특성분석은 커널분석, 핫스팟분석, 스페이스타임큐브분석, EHSA(Emerging HotSpot Analysis)를 수행하였으며, 교통사고 심각도에 영향을 미치는 요인 분석은 데이터마이닝 기법중의 하나인 의사결정나무 모형을 활용하였다. 분석결과 서울시 교통사고는 도심부 보다는 외곽지역에서 많이 발생하며 특히 한강 이남의 상업 활동이 많은 곳에서 교통사고가 많음을 확인할 수 있었다. 특히 서초와 강남의 일부 상업 및 유흥지역을 중심으로 교통사고 집중지역이 나타나며 교통사고 다발지역은 시간이 흐름에 따라 그 현상이 더욱 심화되는 경향을 보이고 있었다. 사망교통사고의 경우 지역적으로는 영등포구, 구로구, 종로구, 중구, 성북구 일부지역에 통계적으로 유의미한 핫스팟지역이 나타나지만 시간대별로 구분해보면 오후 퇴근시간 부터 새벽까지 일부 구간에서 핫스팟이 나타나며 시간 고려 없이 분석된 결과와는 상이한 패턴이 나타남을 알 수 있었다. 서울시 교통사고 심각도에 영향을 미치는 주요 요인으로는 사고유형이 가장 중요한 역할을 하며 도로의 종류, 차량의 종류, 교통사고 발생 시간, 법규위반 종류 등의 순으로 중요도가 나타났다. 교통사고 가운데 심각한 교통사고로 이어지는 경우는 차대 사람이나 차량단독으로 사고가 나는 경우 고속도로나 특별광역시도와 같이 폭원이 넓고 차량속도가 높은 곳에서 승합차나 화물차에서 중상의 교통사고가 일어날 가능성이 높으며, 동일한 상황에서 승합차나 화물차가 아닌 승용차, 자전거, 이륜차 등의 경우에는 새벽시간에 심각한 교통사고로 이어질 가능성이 높은 것으로 나타났다.

Keywords

References

  1. 강병서, 김계수. 2013. 사회과학 통계분석. 한나래 아카데미, p.542-566. Kang BS, Kim KS. 2013. Statistical Analysis of Social Science. Hannarae Academy, p.542-566.
  2. 교통사고조사자료. 2012-2015. 경찰청. Traffic accident investigation document. 2012-2015. National Police Agency.
  3. 교통사고통계 요약. 2016. 도로교통공단. Traffic accident statistics summary. 2016. Road Traffic Authority
  4. 박용우, 백세흠, 박신형, 권오훈. 2016. 의사결정나무를 이용한 고속도로 공간구간 사고 심각도에 관한 연구. 대한교통학회지. 34(6):535-547. Park YW, Baek SH, Park SH, Kwon OH. 2016. A Study on the Crash Severity of Expressway Work Zones Using Decision Tree. ournal of the Korean Society of Transportation. 34(6):535-547. https://doi.org/10.7470/jkst.2016.34.6.535
  5. 박준태, 이수범, 이동민. 2011. 도시부 도로구간 사고 예측모형 개발. 한국교통연구원 교통연구. 18(1):63-73. Park JT, Lee SB, Lee DM. 2011. Development of a Traffic Accident Prediction Model for Urban Roads. The Korea Transport Institute, 18(1):63-73.
  6. 박창이, 김용대, 김진석, 송종우, 최호식. 2013. R을 이용한 데이터 마이닝. 교우사. p.103-121. Park CY, Kim YD, Kim JS, Song JW, Choi HS. 2013. Data mining using R. Kyowoo p.103-121.
  7. 사망교통사고정보. 2012-2015. 경찰청. Death traffic accident information. 2012-2015. National Police Agency.
  8. 손세린, 강영옥. 2017. 서울시 여성운전자 교통사고의 시공간 특성분석. 한국지도학회지. 17(2):89-98. Son SR, Kang YO. 2017. Analysis of the Spatio- Temporal Characteristic of Traffic Accident for Female Driver in Seoul. Journal of the Korean Cartographic Association, 17(2):89-98.
  9. 오주석, 이순철. 2009. 고령보행자의 교통사고 특성 분석. 한국심리학회 학술대회 자료집. p.78-79. Oh JS, Lee SC. 2009. Accident characteristics of elderly pedestrians. Korean Psychological Association, p.78-79.
  10. 유두선, 오상진, 김태영, 박병호. 2008. 주.야간 교통 사고의 특성 및 사고모형 비교분석-청주시 4지 신호교차로를 중심으로. 대한토목학회논문집. 28(2):181-189. Yu DS, Oh SJ, Kim TY, Park BH. 2008. Comparative Analysis on the Characteristics and Models of Traffic Accidents by Day and Nighttime in the Case of Cheongju 4-legged Signalized Intersections. Journal of the Korean Society of Civil Engineers, 28(2):181-189.
  11. 이기훈, 이수기. 2016. 보행자 교통사고 심각도에 영향을 미치는 운전자 연령대별 사고요인 분석. 한국도시설계학회지. 17(3):63-80. Lee KH, Lee SK. 2016. An Analysis of the Factors of Pedestrian Traffic Accident by Driver's Age and Accident Severity - Focused on 2014 TAAS, Seoul, Korea. Journal of the Urban Design Institute of Korea, 17(3):63-80.
  12. 이문영. 2013. 의사결정나무 모형을 활용한 교통사고 요인분석. 명지대학교 교통공학과 박사학위논문. p.91-125. Lee MY. 2013. Analysis of Traffic Accident Factor Using Decision Tree Model[Thesis]. Myungji University. p.91-125.
  13. 이재명, 김태호, 이용택, 원제무. 2008. CART분석을 이용한 교통사고예측모형의 개발. 한국도로학회 논문집. 10(1):31-39. Lee JM, Kim TH, Lee YT, Won JM. 2008. Developing the Traffic Accident Prediction Model using Classification And Regression Tree Analysis. Journal of the Korean Society of Road Engineers,10(1):31-39.
  14. 이재길. 2016. R프로그램에 기반한 다변량분석 및 데이터마이닝. 황소걸음아카데미. p.321-338. Lee JK. 2016. R Program Recipes for Multi-Variate Analysis & Data Minig. Slow&Steady, p.321-338.
  15. 전우훈, 조혜진. 2005. 야간 교통사고의 특성 분석 연구. 대한토목학회 학술대회. p.4729-4732. Jeon WH, Cho HJ. 2005. A Study on Characteristic Analysis for Nighttime Accident. Korean Society of Civil Engineers, p.4729-4732.
  16. 조나혜, 강영옥. 2016. 로그데이터의 시공간 데이터마이닝 및 시각화 연구동향. 한국지도학회지. 16(3):15-27. Cho NH, Kang YO. 2016. A Research Trends about Spatio-temporal Data Mining and Visualization of Log Data. Journal of the Korean Cartographic Association, 16(3):15-27.
  17. 하오근, 박동주, 원제무, 정철호. 2010. 고속도로 사고등급별 돌발상황 처리시간 예측모형 및 의사결정나무 개발. 한국 ITS 학회 논문집. 9(1):101-110. Ha O K, P ark DJ, Won J M, J eong CH. 2 010. T he prediction Models for Clearance Times for the unexpected Incideness According to Traffic Accident Classifications in Highway. Jonal of the Intelligent Transport Systems. 9(1):101-110.
  18. 한상진, 조운범, 장수은. 2014. CART를 이용한 화물자동차 교통사고 특성분석. 한국교통연구원 교통연구. 21(4):87-103. Han SJ, Cho WB, Jang SE. 2014. Analysis on Truck Accidents using Classification and Regression Trees. The Korea Transport Institute, 21(4):87-103.
  19. 행정구역경계. 2015. 통계청. Administrative area boundary. 2015. Statistics Korea
  20. Abdelwahab H, Abdel-Aty M. 2001. Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections. Transportation Research Record. 17(46):6-13.
  21. Abellan J. Lopez G., de Ona J. 2013. Analysis of traffic accident severity using Decision Rules via Decision Trees. Expert Systems with Applications. 40(15):6047-6054.
  22. Anderson T K. 2009. Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis & Prevention, 41(3):359-364. https://doi.org/10.1016/j.aap.2008.12.014
  23. Chang L Y, Chien J T. 2013. Analysis of driver injury severity in truck involved accidents using a non-parametric classification tree model. Safety Science. 51(1):17-22. https://doi.org/10.1016/j.ssci.2012.06.017
  24. Chang L Y, Wang H W. 2006. Analysis of traffic injury severity: An application of non-parametric classification tree techniques. Accident Analysis and Prevention. 38(5):1019-1027. https://doi.org/10.1016/j.aap.2006.04.009
  25. DeJoy D M. 1992. An examination of gender differences in traffic accident risk perception. Accident Analysis & Prevention. 24(3): 237-246. https://doi.org/10.1016/0001-4575(92)90003-2
  26. De Ona J. Lopez G. Mujalli R O, Calvo F J. 2013. Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. Accident Analysis and Prevention. 51:1-10. https://doi.org/10.1016/j.aap.2012.10.016
  27. Elvik R. 2013. Risk of road accident associated with the use of drugs: A systematic review and meta-analysis of evidence from epidemiological studies. Accident Analysis & Prevention. 60:254-267. https://doi.org/10.1016/j.aap.2012.06.017
  28. ESRI ArcGIS Pro, http://pro.arcgis.com.
  29. Getis A, Ord J. 1992. The Analysis of spatial association by use of distance statistics, Geographical Analysis, 2493:189-206.
  30. Graham J. I rving J. Tang X . S ellers S. C risp J . Horwitz D. ... & Carey D. 2015. Increased traffic accident rates associated with shale gas drilling in Pennsylvania. Accident Analysis & Prevention. 74: 203-209. https://doi.org/10.1016/j.aap.2014.11.003
  31. Kristensson P O. Dahlback N. Anundi D. Bjornstad M. Gillberg H. Haraldsson J. ..., Stahl J. 2009. An evaluation of space time cube representation of spatiotemporal patterns. IEEE Transactions on Visualization and Computer Graphics. 15(4):696-702. https://doi.org/10.1109/TVCG.2008.194
  32. Massie D L. Campbell K L. & Williams A F. 1995. Traffic accident involvement rates by driver age and gender. Accident Analysis & Prevention. 27(1): 73-87. https://doi.org/10.1016/0001-4575(94)00050-V
  33. Montella A. Aria M. D'Ambrosio A, Mauriello F. 2012. Analysis of powered two-wheeler crashes in Italy by classification trees and rules discovery. Accident Analysis and Prevention. 49:58-72. https://doi.org/10.1016/j.aap.2011.04.025
  34. Montella A. Aria M. D'Ambrosio A., Mauriello F. 2011. Data mining techniques for exploratory analysis of pedestrian crashes. Transportation Research Record . 2237:107-116. https://doi.org/10.3141/2237-12
  35. Mujalli R O & de Ona J. 2011. A method for simplifying the analysis of traffic accidents injury severity on two-lane highways using Bayesian networks. Journal of Safety Research. 42(5): 317-326. https://doi.org/10.1016/j.jsr.2011.06.010
  36. Parker D. West R. Stradling S. & Manstead A S. 1995. Behavioural characteristics and involvement in different types of traffic accident. Accident Analysis & Prevention. 27(4): 571-581. https://doi.org/10.1016/0001-4575(95)00005-K
  37. Prasannakumar V. Vijith H. Charutha R., Geetha N. 2011. Spatio-temporal clustering of road accidents: GIS based analysis and assessment. Procedia-Social and Behavioral Sciences. 21:317-325. https://doi.org/10.1016/j.sbspro.2011.07.020
  38. Xie Z., Yan J. 2008. Kernel density estimation of traffic accidents in a network space. Computers, Environment and Urban Systems. 32(5):396-406. https://doi.org/10.1016/j.compenvurbsys.2008.05.001
  39. Zhang G. Yau K K. Zhang X., Li Y. 2016. Traffic accidents involving fatigue driving and their extent of casualties. Accident Analysis & Prevention. 87:34-42. https://doi.org/10.1016/j.aap.2015.10.033

Cited by

  1. 머신러닝 기반의 수도권 지역 고령운전자 차대사람 사고심각도 분류 연구 vol.19, pp.4, 2017, https://doi.org/10.14400/jdc.2021.19.4.025