DOI QR코드

DOI QR Code

Characteristics and Trends of Spatiotemporal Distribution of Frost Occurrence in South Korea for 21 Years

21년간 한국의 서리발생 시·공간 분포 특성과 경향

  • Jo, Eunsu (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Kim, Hae-Min (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Shin, Ju-Young (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Kim, Kyu Rang (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Lee, Yong Hee (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Jee, Joonbum (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies)
  • 조은수 (국립기상과학원 기상응용연구부) ;
  • 김해민 (국립기상과학원 기상응용연구부) ;
  • 신주영 (국립기상과학원 기상응용연구부) ;
  • 김규랑 (국립기상과학원 기상응용연구부) ;
  • 이용희 (국립기상과학원 기상응용연구부) ;
  • 지준범 (한국외국어대학교 대기환경연구센터)
  • Received : 2021.12.22
  • Accepted : 2022.04.22
  • Published : 2022.06.30

Abstract

In order to actively prepare to frost damage that occurs in the process of growing crops, the spatial and temporal distribution of frost occurrence in South Korea was derived using frost observation data from 20 regions over the past 21 years (2000~2020). The main products are the number of frost days, first frost day, and last frost day by region. And the climatic trends of these results were identified by performing the Mann-Kendall trend test and Sen's slope estimator. In South Korea, a lot of frost occurs in the inland area to the west of the Taebaek and Sobaek Mountains. Relatively closer to the coastal area, the number of frost days is small, the first frost day is slow, and the last frost day is early. The east coast region has fewer frost days, the first frost day is later, and the last frost day is earlier than the west coast region. The southern sea, the southeastern sea region, and the island region rarely experience frost. As a result of the annual time series trend analysis, although South Korea is a country where climate warming is progressing, there was no trend in reducing the number of frost days and slowing the first frost day, and it was found that the last frost day is delayed by 0.5 days per year.

농작물 생육 과정에서 서리에 의한 동상해 피해에 능동적으로 대비하기 위해, 지난 21년간(2000~2020) 20개 지역의 서리관측 자료를 이용하여 한국 서리발생의 시공간적 분포 특성을 살폈다. 지역별 서리분포 특성은 서리일수, 첫 서리일, 끝 서리일로 표현하였다. 그리고 이러한 결과의 기후 경향은 Mann-Kendall trend test와 Sen's slope estimator를 수행하여 확인하였다. 한국에서 대부분의 서리는 태백산맥과 소백산맥 서쪽 내륙지방에서 발생한다. 상대적으로 해안지역에 가까울수록 서리 발생일이 적고 첫서리일이 느리며 끝서리일이 빠르다. 동해안지역은 서해안지역보다 서리일수가 적고 첫서리일이 느리며 끝서리일이 빠르다. 남해, 남동해, 도서지역은 거의 서리가 발생하지 않는다. 연간 시계열 추이 분석결과 한국은 기후온난화가 진행됨에도 불구하고, 서리일수가 줄어들거나 첫서리 일이 늦춰지는 경향은 나타나지 않았으며, 끝서리일은 1년에 0.5일씩 늦춰지는 것으로 나타났다.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 "기상업무지원 기술개발연구-생명기상 및 농림기상 기술개발(KMA2018-00620)"의 지원으로 수행되었습니다

References

  1. Chmielewski, F. M., A. Muller, and E. Bruns, 2004: Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000. Agricultural and Forest Meteorology 121(1-2), 69-78. https://doi.org/10.1016/S0168-1923(03)00161-8
  2. Choi, Y. E., 2004: Trends on temperature and precipitation extreme events in Korea. Journal of the Korean Geographical Society 39(5), 711-721.
  3. Cobon, D. H., M. Ewai, K. Inape, and R. M. Bourke, 2016: Food shortages are associated with droughts, floods, frost and ENSO in Papua New Guinea. Agricultural Systems 145, 150-164. https://doi.org/10.1016/j.agsy.2016.02.012
  4. Cook, B. I., E. M. Wolkovich, and C. Paramesan, 2012: Divergent responses to spring and winter warming drive community level flowering trends. Proceedings of the National Academy of Sciences 109(23), 9000-9005. https://doi.org/10.1073/pnas.1118364109
  5. Crimp, S., and J. Christopher, 2014: Frost risk on the rise despite warmer climate. Ground Cover Supplement 109.
  6. FAO, 2005: Frost Protection: fundamentals, practice and economics. 10-11.
  7. Guo, L., J. Wang, M. Li, L. Liu, J. Xu, J. Cheng, C. Gang, Q. Yu, J. Chen, C. Peng, and E. Luedeling, 2019: Distribution margins as natural laboratories to infer species'flowering responses to climate warming and implications for frost risk. Agricultural and Forest Meteorology 268, 299-307. https://doi.org/10.1016/j.agrformet.2019.01.038
  8. Hirsch, R., J. Slack, and R. Smith, 1982: Techniques of trend analysis for monthly water quality data. Water Resources Research 18, 107-121. https://doi.org/10.1029/WR018i001p00107
  9. Ho, C. -H., E. J. Lee, I. Lee, and S. J. Jeong, 2006: Earlier spring in seoul, Korea. International Journal of Climatology: A Journal of the Royal Meteorological 26(14), 2117-2127. https://doi.org/10.1002/joc.1356
  10. Hussain, M. M., and I. Mahmud, 2019: pyMannKendall: a python package for non parmetric Mann Kendall family of trend tests. Journal of Open Source Software 4(39), 1556. https://doi.org/10.21105/joss.01556
  11. IPCC, 2013: Climate change 2013: the physical science basis: Working Group 1 contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change.
  12. Jamieson, G. I., 1986: Frost-Management in horticulture. Farm note. Brisbane, Australia: Queensland Department of Primary Industries.
  13. Jeong, Y., U. Chung, and K. H. Kim, 2018: Predicting future frost damage risk of kiwifruit in Korea under climate change using an integrated modelling approach. International Journal of Climatology 38(14), 5354-5367. https://doi.org/10.1002/joc.5737
  14. Jung, J. -E., and J. I. Yun, 2006: Phenology and minimum temperature as dual determinants of late frost risk at vineyards. Korean Journal of Agricultural and Forest Meteorology 8(1), 28-35. (in Korean with English Abstract)
  15. Kendall, M. G., 1975: Rank Correlation Methods. 4th edition, Charles Griffin, London.
  16. Kim, J. H., D. J. Kim, S. O. Kim, E. J. Yun, O. Ju, J. S. Park, and Y. S. Shin, 2019: Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring. Korean Journal of Agricultural and Forest Meteorology 21(1), 55-64. (in Korean with English Abstract) https://doi.org/10.5532/KJAFM.2019.21.1.55
  17. KMA, 2016: Ground meteorological observation guidelines. 100-123.
  18. KMA, 2019: Abnormal climate report. 127pp.
  19. Kozlowski, T. T., P. J. Kramer, and S. G. Pallardy, 2012: The physiological ecology of woody plants. Academic press.
  20. Kwon, Y.-A., 2006: The spatial distribution and recent trend of frost occurrence cays in South Korea. Journal of the Korean Geographical Society 41(3), 361-372. (in Korean with English Abstract)
  21. Lee, S., I. Heo, K. Lee, and W.-T. Kwon, 2005: Classification of local climatic regions in Korea. Asia-Pacific Journal of Atmospheric Sciences 41(6), 983-995. (in Korean with English Abstract)
  22. Lee, S. D., 2017: Global warming leading to phenological responses in the process of urbanization, South Korea. Sustainability 9(12), 2203. https://doi.org/10.3390/su9122203
  23. Mann, H. B., 1945: Non-parametric tests against trend, Econometrica 13, 163-171.
  24. Maracchi, G., O. Sirotenko, and M. Bindi, 2005: Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climatic Change 70(1), 117-135. https://doi.org/10.1007/s10584-005-5939-7
  25. Mavi, H. S., and G. J. Tupper, 2004: Agrometeorology - principles and applications of climate studies in agriculture. CRC Press.
  26. Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-kubler, P. Bissolli, O. Braslavska, A. Briede, F. M. Chmielewski, Z. Crepinsek, Y. Curnel, A. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. Mage, A. Mestre, O. Nordli, J. Penuelas, P. Pirinen, V. Remisova, H. Scheifinger, M. Striz, A. Susnik, A. J. H. V. Vliet, F. Wielgolaski, S. Zach, and A. Zust, 2006: European phenological response to climate change matches the warming pattern. Global Change Biology 12, 1969-1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x
  27. Min, B. M., 2000: Comparison of phenological characteristics for several woody plants in urban climates. Journal of Plant Biology 43(1), 10-17. https://doi.org/10.1007/BF03031030
  28. Murray, M. B., M. G., R. Cannell, and R. I. Smith, 1989: Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology, 693-700.
  29. NAAS, 2016: A Research on Agro-meteorological Disaster Hazards Mapping. 12pp.
  30. Pearce, R. S., 2001: Plant freezing and damage. Annals of Botany 87(4), 417-424. https://doi.org/10.1006/anbo.2000.1352
  31. Perry, K. B., 1998: Basics of frost and freeze protection for horticultural crops. HortTechnology 8(1), 10-15. https://doi.org/10.21273/HORTTECH.8.1.10
  32. Pfleiderer, P., I. Menke, and C. F. Schleussner, 2019: Increasing risks of apple tree frost damage under climate change. Climatic Change 157(3), 515-525. https://doi.org/10.1007/s10584-019-02570-y
  33. Poling, E. B., 2008: Spring cold injury to winegrapes and protection strategies and methods. HortScience 43(6), 1652-1662. https://doi.org/10.21273/hortsci.43.6.1652
  34. Sen, P. K, 1968: Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association 63(324), 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
  35. Sgubin, G., D. Swingediuw, G. Dayon, I. G. de Cortazar-Atauri, N. Ollat, C. Page, and C. van Leeuwen, 2018: The risk of tardive frost damage in French vineyards in a changing climate. Agricultural and Forest Meteorology 250, 226-242. https://doi.org/10.1016/j.agrformet.2017.12.253
  36. Shi, P., Z. Chen, G. V. Reddy, C. Hui, J. Huang, and M. Xiao, 2017: Timing of cherry tree blooming: Contrasting effects of rising winter low temperatures and early spring temperatures. Agricultural and Forest Meteorology 240, 78-89. https://doi.org/10.1016/j.agrformet.2017.04.001
  37. Snyder, R. L., and J. D. Melo Abreu, 2005: Frost protection: fundamentals, practice and economics. FAO, Roma (Italia).
  38. Vanoni, M., H. Bugmann, M. Notzli, and C. Bigler, 2016: Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperature tree species. Forest Ecology and Management 382, 51-63. https://doi.org/10.1016/j.foreco.2016.10.001
  39. Vitasse, Y., L. Schneider, C. Rixen, D. Christen, and M. Rebetez, 2018: Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology 248, 60-69. https://doi.org/10.1016/j.agrformet.2017.09.005
  40. Wahlquist, A., 2012: Researchers probe warming climate frost puzzles. Ground Cover Supplement 101.
  41. Woodruff, D., N. Douglas, and V. French, 1997: Frost Damage in Winter Crops, crop link. Brisbane: The State of Queensland, Department of Primary Industries.