• Title/Summary/Keyword: 스퍼터링법

Search Result 266, Processing Time 0.033 seconds

진공증발법을 이용한 CZTSe 광흡수층 박막 제조 및 태양전지 특성 분석

  • Jeong, Seong-Hun;Gwak, Ji-Hye;Yun, Jae-Ho;An, Se-Jin;Jo, A-Ra;An, Seung-Gyu;Sin, Gi-Sik;Yun, Gyeong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.42.1-42.1
    • /
    • 2011
  • 높은 광흡수 계수를 갖는Cu(In,Ga) $Se_2$ (CIGS) 화합물 박막 소재는 고효율 태양전지 양산을 위해 가장 전도유망한 재료이나 상대적으로 매장량이 적은 In 및 Ga을 사용한다는 소재적 한계가 있다. $Cu_2ZnSnSe_4$ (CZTSe) 혹은 $Cu_2ZnSnS_4$(CZTS)와 같은 Cu-Zn-Sn-Se계 화합물 반도체는 CIGS 내 희소원소인 In과 Ga이 범용원소인 Zn 및 Sn으로 대체된 소재로써 미래형 저가 태양전지 개발을 위해 활발히 연구되고 있는데, 그 화합물 조합에 따라 0.8 eV부터 1.5 eV까지의 에너지 밴드갭을 갖는 것으로 알려져 있다. 스퍼터링법에 기반한 2단계 공정에 의해 3.2%의 CZTSe 및 6.7%의 CZTS 태양전지 효율 달성이 보고된 바 있으며, 최근 비진공 방식을 이용하여 제조된 $Cu_2ZnSn(S,Se)_4$ (CZTSSe) 태양전지가 9.6%의 변환효율을 생산하여 세계 최고기록을 갱신한 바 있다. 반면, 동시진공증발법에 의한 Cu-Zn-Sn-Se계 연구는 박막 조성 조절이 상대적으로 용이하다는 장점에도 불구하고, 상대적으로 공개된 연구결과의 양이 적으며 그 효율에 대한 보고는 특히 미미하다. 본 연구에서는 동시진공증발법에 의한 CZTSe 박막 연구 결과를 바탕으로 Sn 손실을 최소화하기 위한 진공증발 공정을 최적화하였으며, 이를 통해 CZTSe 박막 태양전지를 제조하고 그 특성분석을 통해 5% 이상의 변환효율을 달성하였다.

  • PDF

Zn-Sn-O비정질 산화물 반도체 박막의 Ga 첨가 영향

  • Kim, Hye-Ri;Song, Pung-Geun;Kim, Dong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • 넓은 밴드갭을 가지고 있어 가시광에서 투명하며 높은 이동도를 가진 산화물 반도체는 기존의 Si 기반 TFT 소자를 대체할 차세대 디스플레이의 핵심 소재기술로 관심이 높아지고 있다. 그러나 대표적인 산화물 반도체인 In-Ga-Zn-O (IGZO)에 포함된 인듐의 수요 증가에 따른 가격 급등 문제로 이를 대체할 수 있는 새로운 산화물 반도체 재료에 대한 연구의 필요성이 대두되고 있다. 이에 비교적 저가의 물질로 구성된 Zn-Sn-O계 산화물 소재에 대한 연구가 진행된 바 있으나, 높은 수준의 캐리어 농도를 가지고 있어 TFT 채널용 반도체소재로 적용되기 위해서는 이를 $10^{17}\;cm^{-3}$ 이하로 조절할 수 있는 기술개발이 요구된다. 본 연구는 마그네트론 스퍼터링법을 이용하여 증착된 Ga-Zn-Sn-O (GZTO) 박막의 갈륨 첨가에 따른 특성변화를 조사하였다. GZO ($Ga_2O_3$ 5wt%)와 $SnO_2$ 타켓의 인가 파워를 고정한 상태에서 $Ga_2O_3$ 타켓의 인가 파워를 0~100W로 조절하여 박막 내 Ga 함량을 증가시켰다. 제조된 모든 GZTO 박막은 Ga함량에 관계없이 비정질 구조를 가지며 가시광 영역에서 약 78%의 우수한 투과율을 나타낸다. Ga 함량에 따라 박막의 구조적, 광학적 특성은 크게 변하지 않지만 전기적 특성은 뚜렷한 변화를 나타냈다. $Ga_2O_3$ 파워가 증가할수록 박막 내 캐리어 농도와 이동도의 감소로 비저항이 크게 증가하는데 특히 캐리어 농도는 $Ga_2O_3$ 파워가 0에서 100W로 증가할 때 $2{\times}10^{18}$에서 $8{\times}10^{14}\;cm^{-3}$으로 감소하였다. 이는 Ga-O의 화학적 결합 에너지가 다른 원소들(Zn 또는 In)에 비해 커서 박막 내 산소공공의 감소가 야기되었기 때문이다. 이러한 전기물성의 변화를 이해하기 위해 XPS 분석을 수행하였다. 제조된 GZTO 박막은 $Ga_2O_3$ 파워가 증가함에 따라 O 1s peak에서 산소공공과 관련된 530.8 eV peak의 intensity가 감소한다. 따라서 Ga을 첨가에 따른 캐리어 농도의 감소는 산소공공의 발생억제로 기인한 것으로 판단되며, 본 연구결과는 ZTO계 비정질 산화물 반도체의 활용가능성을 제시하였다.

  • PDF

A Study on the Cathodoluminescence and Structure of Thin Film $ZnGa_2O_4:Mn$ Oxide Phosphor (박막형 $ZnGa_2O_4:Mn$ 산화물 형광체의 음극선루미느센스와 구조적 특성에 관한 연구)

  • Kim, Joo-Han;Holloway Paul H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.541-546
    • /
    • 2006
  • In this study we have investigated cathodoluminescence (CL) and structural properties of thin film $ZnGa_2O_4:Mn$ oxide phosphor by using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), photoluminescence (PL), and cathodoluminescence. PL emission peaked at 506 nm was observed from the $ZnGa_2O_4:Mn$ phosphor target and it was attributed to the $^4T_1-^6A_1$ transition in $Mn^{2+}$ ion. The color coordinates of the emission were x = 0.09 and y = 0.67. The $ZnGa_2O_4:Mn$ films showed the excitation spectrum peaked at 294 nm by $Mn^{2+}$ ion absorption. It was found that the higher intensity of CL emission at 505 nm appears to result from the denser and closely-packed structure in $ZnGa_2O_4:Mn$ phosphor films deposited at lower pressures. The CL intensity did not show any systematic dependence on film surface roughness.

Effects of changing the oxygen partial pressure in cooling after deposition of PZT thin films by reactive sputtering (Reactive sputtering법에 의한 PZT 박막 증착후 냉각시 산소분압의 영향에 관한 연구)

  • 이희수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.406-414
    • /
    • 1996
  • We studied the phase formation and the effect of electrical properties of PZT thin films with changing the oxygen partial pressure in cooling after deposition of PZT thin film by reactive sputtering method. The roughness of thin film increased with decreasing the oxygen partial pressure in cooling due to the evaporation on the surface ofthin films and the grain size was not changed very much. The hysteresis property of PZT thin film was improved toward having a good squareness with increasing the cooling oxygen partial pressure. We observed the decrease of remanent polarization, retained polarization and coercive field with decreasing the oxygen partial pressure. Dielectric constant decreased gradually and internal bias field increased in the measurement of dielectric constant-voltage property with decreasing cooling oxygen partial pressure. We observed the increase of nonswitched polarization in the measurement of field accelerated retention and the decrease of nonswitched polarization with increasing the bias time.

  • PDF

Characteristics of PZT thin films with varying the bottom-electrodes and buffer layer (PZT 박막제조시 하부전극과 buffer층에 따른 박막특성에 관한 연구)

  • 이희수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.177-184
    • /
    • 1996
  • We adopted the $Pt/SiO_{2}/Si$ and the $Ir/SiO_{2}/Si$ substrates of which buffer layer is $PbTiO_{3}$ to improve electrode and interfacial properties of PZT thin film deposited by reactive sputtering method using metal target in this study. We got PZT thin film to have highly oriented(100) structure and good crystallinity using buffer layer in Pt bottom-electrode, though randomly oriented PZT thin film was obtained without buffer layer. Although great improvement of PZT phase formation on Ir bottom-electrode with buffer layer was not observed, we observed the increase of remennant polarization and the decrease of coercive field compared with properties of PZT thin films on the Pt bottom-electrode. So we got the results of the increase of dielectric constant using buffer layer on fabrication of PZT thin film and the better dielectric properties in PZT thin film using Ir bottom-electrode compared with that using Pt bottom-electrode.

  • PDF

A Study on the Deposition Conditions of the TiNi Thin Film by DC Magnetron Sputtering (DC 마그네트론 스퍼터링법에 의해 제조한 TiNi 박막의 증착조건에 관한 연구)

  • Choi, Dae-Cheol;Han, Beom-Gyo;Nam, Tae-Hyun;Ahn, Hyo-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.211-217
    • /
    • 1999
  • In order to investigate the possibilities of microbatteries using TiNi type metal hydride, TiNi films were prepared by DC magnetron sputtering. The films were deposited under various Ar flow rates, DC powers and target-to-substrate distances to find the optimum sputtering conditions. The deposition rate of TiNi thin film increased by increasing the DC power and by decreasing the Ar flow rate and target-to-substrate distance. The chemical composition of the film changed as a target-to-substrate distance. The crystal structure of the film was amorphous state just after deposition and changed to crystalline by vacuum heat treatment.

  • PDF

Deposition of AIN Thin Films by Single Ion Beam Sputtering (단일 이온빔 스퍼터링법을 이용한 AIN 박막의 증착)

  • 이재빈;주한용;이용의;김형준
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.209-215
    • /
    • 1997
  • Aluminum nitride(AIN) thin films were deposited by reactive single ion beam sputtering using N2 or NH3 as reactive gas. The structural, compositional and optical properties of AIN thin films were characterized by XRD, GAXRD, TEM, SEM, XPS UV/VIS spectrophotometer, and FT-IR. All the deposited AIN thin films were amorphous by the analysis fo XRD and GAXRD. However, TEM analysis showed that AIN nano-crystallites were uniformly distributed in the films. The presence of Al-N bonds were also confirmed by FT-IR and XPS analyses. The optical bandgap of AIN films increased up to 6.2 eV and the transmittance was a-bout 100% in visible range with approaching the stoichimetric composition. Irrespective of using N2 or NH3 as reactive gas, the deposited AIN thin films had very smooth surface morphologies. Their refractive index ranged from 1.6 to 1.7.

  • PDF

The surface propery change of multi-layer thin film on ceramic substrate by ion beam sputtering (이온빔 스퍼터링법에 의한 다층막의 표면특성변화)

  • Lee, Chan-Young;Lee, Jae-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.259-259
    • /
    • 2008
  • The LTCC (Low Temperature Co-fired Ceramic) technology meets the requirements for high quality microelectronic devices and microsystems application due to a very good electrical and mechanical properties, high reliability and stability as well as possibility of making integrated three dimensional microstructures. The wet process, which has been applied to the etching of the metallic thin film on the ceramic substrate, has multi process steps such as lithography and development and uses very toxic chemicals arising the environmental problems. The other side, Plasma technology like ion beam sputtering is clean process including surface cleaning and treatment, sputtering and etching of semiconductor devices, and environmental cleanup. In this study, metallic multilayer pattern was fabricated by the ion beam etching of Ti/Pd/Cu without the lithography. In the experiment, Alumina and LTCC were used as the substrate and Ti/Pd/Cu metallic multilayer was deposited by the DC-magnetron sputtering system. After the formation of Cu/Ni/Au multilayer pattern made by the photolithography and electroplating process, the Ti/Pd/Cu multilayer was dry-etched by using the low energy-high current ion-beam etching process. Because the electroplated Au layer was the masking barrier of the etching of Ti/Pd/Cu multilayer, the additional lithography was not necessary for the etching process. Xenon ion beam which having the high sputtering yield was irradiated and was used with various ion energy and current. The metallic pattern after the etching was optically examined and analyzed. The rate and phenomenon of the etching on each metallic layer were investigated with the diverse process condition such as ion-beam acceleration energy, current density, and etching time.

  • PDF

Properties Investigation of Corrosion Monitoring for Pure Mg Thin Films under Wet-Dry Cyclic Conditions by Using Electrochemical Impedance Spectroscopy Method (건습환경중 순 Mg박막의 EIS부식 모니터링 특성 관찰)

  • Bae, I.Y.;Lee, K.H.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.192-193
    • /
    • 2005
  • Magnesium thin films were prepared on cold-rolled steel substrates by RF(Radio Frequency) magnetron sputtering technique.$^{1)}$ The crystal orientation and monitoring of the deposited films were investigated by using XRD(X-ray Diffraction) and EIS(Electrochemical Impedance Spectroscopy), respectively. The corrosion rates of Mg thin films deposited with different argon gas pressure and substrate bias voltage were monitored by AC impedance method under a cyclic wet-dry condition, which was conducted by exposure to alternate conditions of 1h immersion in 3%NaCl solution and 5h drying at 60% RH and 25$^{\circ}C$. The result of corrosion rate of Mg thin films deposited at various Ar gas pressures and substrate bias voltage under wet-dry cyclic exposure in chloride-containing solutions was showed the following conclusions. At the region I during the onset of the wet cycle, corrosion rate showed relatively low value. The increase in the Corrosion rate of region II is due to the increase in the chloride concentration. Corrosion rate of region III during the onset of the cycle zero and salt crystals remain on the metal surface.$^{2)}$

  • PDF

Structural, Optical and Photocatalyst Property of Copper-doped TiO2 Thin Films by RF Magnetron Co-sputtering (동시 스퍼터링법을 이용하여 Cu 도핑한 TiO2 박막의 구조적, 광학적 및 광분해 특성)

  • Heo, Min-Chan;Hong, Hyun-Joo;Hahn, Sung-Hong;Kim, Eui-Jung;Lee, Chung-Woo;Joo, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.104-109
    • /
    • 2006
  • Cu-doped $TiO_2$ thin films were prepared by RF magnetron co-sputtering, and their structural, optical and photodegradation. properties were examined as a function of calcination temperature. XRD results showed that the crystallite size of Cu/$TiO_2$ thin films was bigger than that of the pure $TiO_2$ thin films. SEM results revealed that the agglomerated particle size of the Cu/$TiO_2$ films was more uniform and smaller than that of pure $TiO_2$ films. The absorption edge of thin films calcined at $900^{\circ}C$ was red shifted, resulting from the phase transformation from anatase to rutile phase, and the transmittance of the thin film rapidly decreased due to an increase in particle size. The photodegradation properties of the Cu/$TiO_2$ thin films were superior to those of the pure $TiO_2$ thin films.