A Study on the Cathodoluminescence and Structure of Thin Film $ZnGa_2O_4:Mn$ Oxide Phosphor

박막형 $ZnGa_2O_4:Mn$ 산화물 형광체의 음극선루미느센스와 구조적 특성에 관한 연구

  • Kim, Joo-Han (School of Materials Science and Engineering, Yeungnam University) ;
  • Holloway Paul H. (Department of Materials Science and Engineering, University of Florida)
  • 김주한 (영남대학교 신소재공학부) ;
  • Published : 2006.09.01

Abstract

In this study we have investigated cathodoluminescence (CL) and structural properties of thin film $ZnGa_2O_4:Mn$ oxide phosphor by using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), photoluminescence (PL), and cathodoluminescence. PL emission peaked at 506 nm was observed from the $ZnGa_2O_4:Mn$ phosphor target and it was attributed to the $^4T_1-^6A_1$ transition in $Mn^{2+}$ ion. The color coordinates of the emission were x = 0.09 and y = 0.67. The $ZnGa_2O_4:Mn$ films showed the excitation spectrum peaked at 294 nm by $Mn^{2+}$ ion absorption. It was found that the higher intensity of CL emission at 505 nm appears to result from the denser and closely-packed structure in $ZnGa_2O_4:Mn$ phosphor films deposited at lower pressures. The CL intensity did not show any systematic dependence on film surface roughness.

본 연구에서는 박막형 $ZnGa_2O_4:Mn$ 산화물 형광체의 음극선루미느센스 특성과 구조적 성질에 대하여 field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), photoluminescence (PL), 그리고 cathodoluminescence (CL) 방법을 이용하여 조사하였다. $ZnGa_2O_4:Mn$ 형광체 타겟으로부터 $Mn^{2+}$ 이온의 $^4T_1{\rightarrow}^6A_1$ 전이에 의한 506nm 파장에서의 PL emission 스펙트럼이 관찰되었다. 색좌표는 x = 0.09, y = 0.67 이었다. $ZnGa_2O_4:Mn$ 박막의 여기 스펙트럼은 $Mn^{2+}$ 이온 흡수에 의한 294 nm의 피크 파장을 나타내었다. 낮은 압력에서 증착한 $ZnGa_2O_4:Mn$ 형광체 박막은 고밀도의 치밀한 단면구조를 보였고, 높은 세기의 음극선루미느센스가 505 nm 피크 파장에서 나타났다. 표면 거칠기가 음극선루미느센스의 세기에 미치는 영향은 관찰되지 않았다.

Keywords

References

  1. P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, J. Vac. Sci. Technol. B 17, 758 (1999) https://doi.org/10.1116/1.590634
  2. L. E. Shea, R. K. Datta, and J. J. Brown, Jr., J. Electrochem. Soc. 141, 1950 (1994) https://doi.org/10.1149/1.2055033
  3. J. M. Kim, W. B. Choi, N. S. Lee, and J. E. Jung, Diamond and Related Materials 3, 1184 (2000)
  4. I. J. Hsieh, M. S. Feng, K. T. Kuo, and P. Lin, J. Electrochem. Soc. 141, 1617 (1994) https://doi.org/10.1149/1.2054971
  5. Y. E. Lee, D. P. Norton, and J. D. Budai, Appl. Phys. Lett. 74, 3155 (1999) https://doi.org/10.1063/1.124095
  6. J. H. Kim and P. H. Holloway, Appl. Phys. Lett. 84, 2070 (2004) https://doi.org/10.1063/1.1650031
  7. T. Minami, Y. Kuroi, and S. Takata, J. Vac. Sci. Technol. A 14, 1736 (1996) https://doi.org/10.1116/1.580329
  8. M. Ohring, The Materials Science of Thin Films, Academic Press (1992)