• Title/Summary/Keyword: 스케일 모델

Search Result 327, Processing Time 0.027 seconds

Visualization for Internal Flow of Submerged-Nozzle SRM by Cold Air-flow Test (내삽노즐 고체로켓의 공기 유동모사시험을 통한 내부유동 가시화)

  • Kim, Do-Hun;Cho, Yong-Ho;Lee, Yeol;Koo, Ja-Ye;Kim, Yoon-Gon;Kang, Moon-Jung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.181-185
    • /
    • 2010
  • The behavior of combustion-induced internal flow of SRM equipped with fin-slot grain and submerged nozzle is very complex and diverse. Cold air-flow test for 2D and 3D scale models of SRM has been done in order to specify the visualization method to analyze particular internal flow patterns such as roll-torque inducing flow. Swirl flow induced by asymmetric vortical tube also has been visualized through employing various light source and recording directions.

  • PDF

Image Denoising Using Bivariate Gaussian Model In Wavelet Domain (웨이블릿 영역에서 이변수 가우스 모델을 이용한 영상 잡음 제거)

  • Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.57-63
    • /
    • 2008
  • In this paper, we present an efficient noise reduction method using bivariate Gaussian density function in the wavelet domain. In our method, the probability model for the interstate dependency in the wavelet domain is modeled by bivariate Gaussian function, and then, the noise reduction is performed by Bayesian estimation. The statistical parameter for Bayesian estimation can be approximately obtained by the $H{\ddot{o}}lder$ inequality. The simulation results show that our method outperforms the previous methods using bivariate probability models.

Numerical Study of Low-pressure Subcooled Flow Boiling in Vertical Channels Using the Heat Partitioning Model (열분배모델을 이용한 수직유로에서의 저압 미포화비등 해석)

  • Lee, Ba-Ro;Lee, Yeon-Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.457-470
    • /
    • 2016
  • Most CFD codes, that mainly adopt the heat partitioning model as the wall boiling model, have shown low accuracies in predicting the two-phase flow parameters of subcooled boiling phenomena under low pressure conditions. In this study, a number of subcooled boiling experiments in vertical channels were analyzed using a thermal-hydraulic component code, CUPID. The prediction of the void fraction distribution using the CUPID code agreed well with experimental data at high-pressure conditions; whereas at low-pressure conditions, the predicted void fraction deviated considerably from measured ones. Sensitivity tests were performed on the submodels for major parameters in the heat partitioning model to find the optimized sets of empirical correlations suitable for low-pressure subcooled flow boiling. The effect of the K-factor on the void fraction distribution was also evaluated.

Virtual Flight Test for Conceptual Lunar Lander Demonstrator (달 착륙선 개념설계형상 검증모델 가상비행시험)

  • Lee, Won-Beom;Rew, Dong-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • The conceptual design lunar lander demonstrator has been developed to use as a test bed for advanced spacecraft technologies and to test a prototype planetary lander capable of vertical takeoff and landing. Size of the lunar lander demonstrator is the same as that of lunar lander conceptually designed, however, the weight of lunar lander demonstrator is designed in 1/6 scale in consideration of gravity difference between moon and earth. The thruster clustering and virtual flight test were performed in the demonstrator fixed on the ground. The demonstrator ground test has been conducted for two months in the test site for the solid motor combustion of the Goheung Flight Center. The purposes of ground test of demonstrator are to demonstrate and verify essential electronics, propulsion system, control algorithm, embedded software, structure and system operation technologies before developing the flight model lander. This paper is described about the virtual flight test including test configuration, test aims and test facilities

Development of Improved String Model for Instruments with Anjok (안족이 있는 악기의 개선된 현의 모델 개발)

  • Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.328-333
    • /
    • 2007
  • In this paper, we describe characteristics of a movable bridge called the Anjok and propose an improved string model which has delay line controller in physical modeling of the Gayageum. Movable bridge, the Anjok determines the length of vibrating string and transmits the vibration of each string to the body of the Gayageum. We analyze the variations in frequency domain and implement the Anjok model as parametric form using the first-order polynomial fitting in logarithmic scale graph, because the length of string changes fundamental frequency. In order to implement the Anjok model, frequency fitting, tension fitting and frequency fitting using leaky integrator are used. The frequency fitting using leaky integrator has the best results among those. Proposed string model with the Anjok model can represent real tuning system of the real Gayageum and the proposed model could synthesize sounds which is similar to original sounds.

Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test (원심모형시험을 이용한 케이슨 안벽의 지진시 거동에 대한 수치해석 검증)

  • Lee, Jin-Sun;Park, Tae-Jung;Lee, Moon-Gyo;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.57-70
    • /
    • 2018
  • In this study, verification of the nonlinear effective stress analysis is performed for introducing performance based earthquake resistance design of port and harbor structures. Seismic response of gravitational caisson quay wall in numerical analysis is compared directly with dynamic centrifuge test results in prototype scale. Inside of the rigid box, model of the gravitational quay wall is placed above the saturated sand layer which can show the increase of excess pore water pressure. The model represents caisson quay wall with a height of 10 m, width of 6 m under centrifugal acceleration of 60 g. The numerical model is made in the same dimension with the prototype scale of the test in two dimensional plane strain condition. Byrne's liquefaction model is adopted together with a nonlinear constitutive model. Interface element is used for sliding and tensional separation between quay wall and the adjacent soils. Verification results show good agreement for permanent displacement of the quay wall, horizontal acceleration at quay wall and soil layer, and excess pore water pressure increment beneath the quay wall foundation.

Analysis of Color Error and Distortion Pattern in Underwater images (수중 영상의 색상 오차 및 왜곡 패턴 분석)

  • Jeong Yeop Kim
    • Journal of Platform Technology
    • /
    • v.12 no.3
    • /
    • pp.16-26
    • /
    • 2024
  • Videos shot underwater are known to have significant color distortion. Typical causes are backscattering by floating objects and attenuation of red colors in proportion to the depth of the water. In this paper, we aim to analyze color correction performance and color distortion patterns for images taken underwater. Backscattering and attenuation caused by suspended matter will be discussed in the next study. In this study, based on the DeepSeeColor model proposed by Jamieson et al., we verify color correction performance and analyze the pattern of color distortion according to changes in water depth. The input images were taken in the US Virgin Islands by Jamieson et al., and out of 1,190 images, 330 images including color charts were used. Color correction performance was expressed as angular error using the input image and the correction image using the DeepSeeColor model. Jamieson et al. calculated the angular error using only black and white patches among the color charts, so they were unable to provide an accurate analysis of overall color distortion. In this paper, the color correction error was calculated targeting the entire color chart patch, so an appropriate degree of color distortion can be suggested. Since the input image of the DeepSeeColor model has a depth of 1 to 8, color distortion patterns according to depth changes can be analyzed. In general, the deeper the depth, the greater the attenuation of red colors. Color distortion due to depth changes was modeled in the form of scale and offset movement to predict distortion due to depth changes. As the depth increases, the scale for color correction increases and the offset decreases. The color correction performance using the proposed method was improved by 41.5% compared to the conventional method.

  • PDF

Evaluation of Liquefaction Model using Dynamic Centrifuge Test (포화된 경사 사질토 지반의 액상화 수치모델 거동평가)

  • Lee, Jin-Sun;Lee, Sang-Un
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.31-42
    • /
    • 2022
  • This study verified numerical analysis of the liquefaction phenomenon using LEAP-2017 international round-robin centrifuge test results. Dynamic centrifuge test is performed by applying a 1 Hz tapered sine wave to the model soil deposit, which was formed under a water table in a surface slope of 5° using Ottawa F-65 sand. A numerical model was made on a prototype scale and analyzed using the finite difference method in 2D and 3D conditions. The analyses were verified for acceleration and pore-water pressure histories with depth and residual displacement. Verification results revealed that all numerical liquefaction models agree reasonably with the test result for acceleration histories but not for pre-water pressure histories. Numerical analyses showed much smaller residual displacement than the centrifuge test. Thus, it is necessary to compare the results of numerical analysis with the centrifuge test performed by other institutes in the future.

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.

Performance Improvement of Radar Target Classification Using UWB Measured Signals (광대역 레이다 측정 신호를 이용한 표적 구분 성능 향상)

  • Lee, Seung-Jae;Lee, Sung-Jun;Choi, In-Sik;Park, Kang-Kuk;Kim, Hyo-Tae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.981-989
    • /
    • 2011
  • In this paper, we performed radar target classification for the five scale models using ultra-wideband measured signal. In order to compare the performance, the 2 GHz(2~4 GHz), 4 GHz(2~6 GHz), and 6 GHz(2~8 GHz) bandwidth were used. Short time Fourier transform(STFT) and continuous wavelet transform(CWT) are used for target feature extraction. Extracted feature vectors are used as input for the multi-layerd perceptron(MLP) neural network classifier. The results show that as the bandwidth is wider, the performance is better.