DOI QR코드

DOI QR Code

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles

다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구

  • Chrysanti, Asrini (Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung) ;
  • Song, Yangheon (Coastal Hydrodynamics Lab., Korea University) ;
  • Son, Sangyoung (School of Civil, Environmental and Architectural Engineering, Korea University)
  • Received : 2023.09.24
  • Accepted : 2023.12.18
  • Published : 2023.12.31

Abstract

Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.

댐붕괴흐름은 댐이 갑자기 붕괴하여 제어가 어려운 상태의 고속흐름이 방출되는 현상이다. 이 연구에서는 3차원의 댐붕괴흐름을 모의하기 위해 OpenFOAM을 사용하여 층류 및 난류 모델을 적용하고 그 결과를 비교하였다. 난류 모의를 위해 레이놀즈 평균 나비에-스토크스 (Reynolds-Averaged Navier-Stokes) 모델, 구체적으로 k-ε 모델을 사용하였다. 수리모형실험과 함께 수정된 다층 블록 장애물 시나리오를 대상으로 두 가지 모델을 평가하였다. 두 모델 모두 댐붕괴흐름을 효과적으로 재현하였으며, 난류 모델은 흐름의 변동성을 감소시키는 역할을 보여줬다. 그러나 난류 모델에서의 과도한 에너지소산은 수위를 과소 평가하게 하는 것으로 나타났다. 수치기법 및 격자 해상도를 개선하여 적용한 결과 흐름재현성이 향상되었는데 이는 특히 구조물 근처의 난류흐름에서 두드러졌다. 모델 안정성의 경우 난류모델의 사용여부보다는 수치기법 및 격자 해상도의 개선에 더 크게 영향을 받았다. k-ε 모델에 내재된 시간평균처리의 특성은 불연속성과 불안정성이 두드러진 댐붕괴흐름을 재현하는 데 한계가 있음을 나타냈다. RANS 모델을 포함한 난류모의는 방대한 계산자원이 필요하지만, 층류 모델과 비교하여 성능 향상이 제한적이었다. 댐붕괴흐름을 정확히 재현하기 위해 LES (Large Eddy Simulation) 및 DNS (Direct Numerical Simulation)과 같은 고급 난류 모델의 사용이 권장되며, 이를 위해서는 미세한 공간 및 시간 스케일의 구성이 필수적이다. 이 연구를 통해 댐붕괴흐름을 모의할 때 기본적으로 사용할 수 있는 주요 접근법과 적용가능성을 측정하였으며, 구조물 근처에서 난류흐름에 대한 정확한 표현의 중요성을 강조할 수 있었다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(NRF-2019R1A2C1089109). This work was also supported by Korea Environment Industry & Technology Institute (KEITI) through R&D Program for Innovative Flood Protection Technologies against Climate Crisis Program (or Project), funded by Korea Ministry of Environment (MOE)(RS-2023-00218873).

References

  1. Aureli, F., Dazzi, A., Maranzoni, A., Mignosa, P., and Vacondio, R. (2015). "Experimental and numerical evaluation of the force due to the impact of a dam break wave on a structure." Advance Water Resources, Vol. 76, pp. 29-42. https://doi.org/10.1016/j.advwatres.2014.11.009
  2. Biscarini, C., Francesco, S.D., and Manciola, P. (2010). "CFD modelling approach for dam break flow studies." Hydrology and Earth System Sciences, Vol. 14, No. 4, pp. 705-718. https://doi.org/10.5194/hess-14-705-2010
  3. Chanson, H. (2006). "Tsunami surges on dry coastal plains: Application of dam break wave equations." Coastal Engineering Journal, Vol. 48, No. 4, pp. 355-370. https://doi.org/10.1142/S0578563406001477
  4. Delisle, M.-P.C., Kim, Y., and Gallien, T.W. (2023). "A numerical study of dam-break driven swash and beach groundwater interactions." Journal of Geophysical Research: Oceans, Vol. 128, No. 9, e2022JC019615. doi: 10.1029/2022JC019615.
  5. Evangelista, S. (2015). "Experiments and numerical simulations of dike erosion due to a wave impact." Water, Vol. 7, pp. 5831-5848. https://doi.org/10.3390/w7105831
  6. Hien, L.T.T., and Van Chien, N. (2021). "Investigate impact force of dam-break flow against structures by both 2D and 3D numerical simulations." Water, Vol. 13, No. 3, 344. doi: 10.3390/w13030344.
  7. Higuera, P., Lara, J.L., and Losada, I.J. (2013). "Simulating coastal engineering processes with OpenFOAM®." Coastal Engineering, Vol. 71, pp. 119-134. doi: 10.1016/j.coastaleng.2012.06.002.
  8. Hwang, S., and Son, S. (2023). "An efficient HLL-based scheme for capturing contact-discontinuity in scalar transport by shallow water flow." Communications in Nonlinear Science and Numerical Simulation, Vol. 127, 107531.
  9. Iissa, R., Gosman, A.D., and Watkins, A.P.(1986). "The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme." Journal of Computational Physics, Vol. 62, No. 1, pp. 66-82. https://doi.org/10.1016/0021-9991(86)90100-2
  10. Jasak, H. (1996). Error analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. Thesis, Imperial College of Science, London, UK.
  11. Kim, Y., Zhou, Z., Hsu, T.-J., and Puleo, J.A. (2017). "Large eddy simulation of dam-break-driven swash on a rough-planar beach." Journal of Geophysical Research: Oceans, Vol. 122, pp. 1274-1296, doi: 10.1002/2016JC012366.
  12. Kissling, K., Springer, J., Jasak, H., Schutz, S., Urban, K., and Piesche, M. (2010). "A coupled pressure based solution algorithm based on the volume-of-fluid approach for two or more immiscible fluids." V European Conference on Computational Fluid Dynamics, ECCOMAS, Lisbon, Portugal, pp. 1-16.
  13. Kocaman, S., Guzel, H., Evangelista, S., Ozmen-Cagatay, H., and Viccione, G. (2020). "Experimental and numerical analysis of a dam-break flow through different contraction geometries of the channel." Water, Vol. 12, No. 4, 1124. doi: 10.3390/w12041124.
  14. Launder, B.E., and Spalding, D.B. (1974). "The numerical computation of turbulent flows." Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  15. Liu, D., Tang, W., Wang, J., Xue, H., and Wang, K. (2016). "Comparison of laminar model, RANS, LES and VLES for simulation of liquid sloshing." Applied Ocean Research, Vol. 59, pp. 638-649. doi: 10.1016/j.apor.2016.07.012.
  16. Patankar, S.V., and Spalding, D.B. (1972). "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows." International Journal of Heat Mass Transfer, Vol. IS, pp. 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
  17. Robb, D.M., and Vasquez, J.A. (2015). "Numerical simulation of dam-break flows using depth-averaged hydrodynamic and three-dimensional CFD Models." 22nd Canadian Hydrotechnical Conference, CSCE, Nontreal, Canada, pp. 27-36.
  18. Rodriguez-Ocampo, P.E., Ring, M., Hernandez-Fontes, J.V., Alcerreca-Huerta, J.C., Mendoza, E., and Silva, R. (2020). "CFD simulations of multiphase flows: Interaction of miscible liquids with different temperatures." Water, Vol. 12, No. 9, 2581. doi: 10.3390/w12092581.
  19. Rusche, H. (2002). Computational fluid dynamics of dispersed two-phase flows at high phase fractions. Ph.D. Thesis, Imperial College of Science, London, UK.
  20. Soares-Frazao, S. (2007). "Experiments of dam-break wave over a triangular bottom sill." Journal of Hydraulic Research, Vol. 45, No. sup1, pp. 19-26. https://doi.org/10.1080/00221686.2007.9521829
  21. Soares-Frazao, S., and Zech, Y. (2002). "Dam Break in channels with 90°  bend." Journal of Hydraulic Engineering-ASCE, Vol. 128, No. 11, pp. 956-968. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:11(956)
  22. Soares-Frazao, S., and Zech, Y. (2007). "Experimental study of dambreak flow against an isolated obstacle." Journal of Hydraulic Research, Vol. 45, No. sup1, pp. 27-36.