Browse > Article
http://dx.doi.org/10.7843/kgs.2022.38.11.31

Evaluation of Liquefaction Model using Dynamic Centrifuge Test  

Lee, Jin-Sun (Dept. of Civil and Environmental Engrg., Wonkwang Univ.)
Lee, Sang-Un (Dept. of Civil and Environmental Engrg., Wonkwang Univ.)
Publication Information
Journal of the Korean Geotechnical Society / v.38, no.11, 2022 , pp. 31-42 More about this Journal
Abstract
This study verified numerical analysis of the liquefaction phenomenon using LEAP-2017 international round-robin centrifuge test results. Dynamic centrifuge test is performed by applying a 1 Hz tapered sine wave to the model soil deposit, which was formed under a water table in a surface slope of 5° using Ottawa F-65 sand. A numerical model was made on a prototype scale and analyzed using the finite difference method in 2D and 3D conditions. The analyses were verified for acceleration and pore-water pressure histories with depth and residual displacement. Verification results revealed that all numerical liquefaction models agree reasonably with the test result for acceleration histories but not for pre-water pressure histories. Numerical analyses showed much smaller residual displacement than the centrifuge test. Thus, it is necessary to compare the results of numerical analysis with the centrifuge test performed by other institutes in the future.
Keywords
Dynamic centrifuge test; LEAP-2017; Liquefaction; Numerical analysis; Response history analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bastidas, A.M.P. (2016), Ottawa F-65 sand characterization, Ph. D Dissertation. UC Davis.
2 Beaty, M.H. and Byrne, P.M. (2011), UBCSAND constitutive model version 904aR. Documentation Report, UBCSAND constitutive model. https://www.itascacg.com/software/udm-library/ubcsand
3 Byrne, P.M. (1991), "A Cyclic Shear-volume Couping and Porepressure Model for Sand", Proceedings of Second International Conference on Recent Adyances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, Paper No.1,24, pp.47-55.
4 Cheng, Z. (2018), "A Practical 3D Bounding Surface Plastic Sand Model for Geotechnical Earthquake Engineering Application", Geotechnical Earthquake Engineering and Soil Dynamics (GEESD) Congress V, June 10-13, Austin, Texas, United States.
5 Choo, Y.W. and Kim, D.S. (2005), "Dynamic Deformation Characteristicsof Sands Under Various Drainage Conditions", Journal of the Korean Geotechnical Society, Vol.21, No.3, pp.27-42.
6 Dafalias Y.F. and Manzari, M.T. (2004), "Simple Plasticity sand Model Accounting for Fabric Change Effects", Journal of Engineering Mechanics, ASCE, doi:10.1061/(ASCE)073 3-9399(2004)130:6(622).   DOI
7 Dokainish, M.A. and Subbaraj, K.A. (1988), "Survey of Direct Time-integration Methods in Computational Structural Dynamics-i. Explicit Methods", Computers and Structures, Vol.32, pp.1371-1386, doi:10.1016/0045-9749(89)9031.   DOI
8 Itasca Consulting Group (2021), computer software, http://www.itascacg.com
9 Kim, D.S. and Stokoe, K.H. (1994), "Torsional Motion Monitoring System for Small-Strain (10-5 to 10-3%) Soil Testing", Geotechnical Testing Journal, Vol.17, No.1, 1994, pp.17-26, https://doi.org/10.1520/GTJ10068J.   DOI
10 Kim, J.H., Choo, Y.W., and Kim, D.S. (2017a), "Correlation between the Shear-wave Velocity and Tip Resistance of Quartz Sand in a Centrifuge", Journal of Geotechnical and Geoenvironmental Engineering, Vol.143, No.11, doi:10.1061/(ASCE)GT.1943-56 06.0001782   DOI
11 Kim, S.N., Lee, M.G., Ha, J.G., Kim, J.H., and Kim, D.S. (2017), "Comparison of Liquefaction behavior with Different Relative Density Using Centrifuge Test", Proceedings of The 30th KKHTCNN Symposium on Civil Engineering, National Taiwan University, Taipei, Taiwan.
12 Kutter, B.L. and Wilson, D.W. (1999), "Deliquefaction Shock Waves", In Proceedings of the 7th US-Japan Workshop on earthquake resistant design of lifeline facilities and countermeasures against soil liquefaction. Seattle. 295-310.
13 Lee, J.S., Kim, S.N., and Kim, D.S. (2019), "Evaluation of the Numerical Liquefaction Model behavior with Drainage Condition", Journal of the Korean Geotechnical Society, Vol.35, No.11, pp.63-74, doi:10.7843/kgs.2019.35.11.63   DOI
14 Kutter, B., Zeghal, M., and Manzari, M. (2018), "LEAP-UCD-2017 Experiments (Liquefaction Experiments and Analysis Projects)", DesignSafe-CI [publisher]. Dataset, doi:10.17603/DS2N10S   DOI
15 Kutter, B., Carey, T., Hashimoto, T., Zeghal, M., Abdoun, T., Kokkali, P., et al. (2017), "LEAP-GWU-2015 Experiment Specifications, Results, and Comparisons", Soil Dynamics and Earthquake Engineering, Vol.113, pp.1-13, doi:10.1016/j.soildyn.2017. 05.018.   DOI
16 Kutter, B. et al. (eds.) (2020), Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading LEAP-UCD-2017, Springer, doi:10.1007/978-3-030-22818-7_4   DOI
17 Manzari, M.T. et al. (2018), "Liquefaction Experiment and Analysis Projects (LEAP): Summary of Observations from the Planning Phase", Soil Dynamics and Earthquake Engineering, Vol.113, pp.714-743, doi:10.1016/j.soildyn.2017.05.015 5.   DOI
18 Martin, G.R., Finn, W.D.L., and Seed, H.B. (1975), "Fundamentals of Liquefaction under Cyclic Loading", Journal of Geotechnical Engineering Division, ASCE, Vol.101, (GT5), pp.423-438.   DOI
19 Mejia, L.H. and Dawson, E.M. (2006), "Earthquake Deconvolution for FLAC", Proceedings of 4th International FLAC Symposium on Numerical Modelling in Geomechanics, Paper 04-10, ISBN 0-9767577-0-2.
20 Schofield, A.N. (1980), "Cambridge Geotechnical Centrifuge Operations, Twentieth Rankine Lecture", Geotechnique, Vol.30, No.3, pp.227-68. http://dx.doi.org/10.1680/geot. 1980.30.3.227.   DOI
21 Tsegaye, A.B. (2010), Liquefaction model(UBC3D), Report No. 1, Plaxis B.V. Delft, Netherlands. https://communities.bentley.com/products/geotech-analysis/w/plaxis-soilvision-wiki/46116/ubcsand3d-model