• Title/Summary/Keyword: 슁글드

Search Result 17, Processing Time 0.024 seconds

A Study on the Output Characteristics According to the Cell Electrode Pattern for a Large-area Double-sided Shingled Module (대면적 양면형 슁글드 모듈을 위한 셀 전극 패턴에 따른 출력 특성에 관한 연구)

  • Seungah, Ur;Juhwi, Kim;Jaehyeong, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.64-69
    • /
    • 2022
  • Double-sided photovoltaic (PV) modules have received significant attention in recent years as a technology that can achieve higher annual energy production rates than single-sided modules. The shingled technology is a promising method for manufacturing high-density and high-power modules. These modules are divided by laser and joined with electrically conductive adhesives. The output efficiency of the divided cells depends on the division pattern and the electrode pattern, making it important to understand the output characteristics. In this study, the output characteristics of large-area double-sided light-receiving shingled cells with different split patterns and electrode patterns were investigated. The M6 size, with 6 divisions in the electrode pattern, had the highest efficiency when using 142 front fingers and 146 rear fingers. The M10 size, with 7 divisions, had the highest output when using 150 fingers equally in the front and rear. The M12 size, also with 7 divisions, showed the highest output characteristics when using 192 front fingers and 208 rear fingers.

Degradation Characteristics according to Encapsulant Materials Combining with Transparent Backsheet on the Mini Shingled Si Photovoltaic Modules (투명 백 시트와 봉지재 물질 조합에 따른 소형 슁글드 실리콘 태양전지 모듈의 열화 특성 분석)

  • Son, Hyung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.12-16
    • /
    • 2020
  • This study investigates the degradation characteristics of different material types of ethyl vinyl acetate (EVA) and polyolefin (POE) with combining transparent backsheet. To this end, we fabricated samples with structure of glass/encapsulant/transparent backsheet for each type of encapsulants, and shingled Si modules with the same structure. The samples were then subjected to accelerated test by storing under damp heat condition of 85℃ and 85% RH. As a result, encaplsulant discoloration was observed, which the transmittance of the samples with EVA decreased in a rapid rate than the samples with POE. The discoloration also affected a power degradation of the shingled modules with a reduction of current density, resulting that the module with EVA showed more drop on the efficiency than the modules with POE. Furthermore, corrosion of the soldered ribbon caused by acetic acid produced from the degraded EVA also contributed in fill factor reduction.

Simulation of Shingled String Characteristics Depending on Cell Strips Type for High Power Photovoltaic Modules (고출력 태양광 모듈을 위한 분할 셀 종류에 따른 슁글드 스트링 특성 시뮬레이션)

  • Park, Ji Su;Oh, Won Je;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.10-15
    • /
    • 2020
  • Recently, with the increase in the use of urban solar power, solar modules are required to produce high power in limited areas. In this report, we proposed the fabrication of a high-power photovoltaic module using shingles technology, and developed accurate string characteristic simulations based on circuit modeling. By comparing the resistance components between the interconnected cells and the cell strips, the ECA resistance was determined to be 0.003 Ω. Based on the equivalent circuit of the modeled shingled string, string simulation was performed according to the type of cell strip. As a result, it was determined that the cell efficiency of the 4-cell strip was the highest at 19.66%, but the efficiency of the string simulated with the 6-cell strip was the highest at 20.48% in the string unit.

Characterization of Electrically Conductive Adhesives for Shingled Array Photovoltaic Cells (전도성 접착제 물성에 따른 슁글드 어레이 태양전지 특성 평가)

  • Jee, Hongsub;Choi, Wongyong;Lee, Jaehyeong;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.95-99
    • /
    • 2017
  • The interconnecting shingled solar cells method shows extremely high ratio active area per total area and has the excellent potential for high power PV (photovoltaic). Compared to the conventional module, it can have much more active area due to busbar-free structure. The properties of ECA (electrically conductive adhesives) are significant to fabricate the shingled array PV since it should be used in terms of electric and structural connection. Various ECA were tried and characterized to optimize the soldiering conditions. The open circuit voltage of shingled array cells showed a three-fold increase and efficiency was also increased by 1.63%. The shingled array cells used in CE3103WLV showed the highest power and in CA3556HF the lowest curing temperature and very fast curing time.

Effect of Laser Scribing in High Efficiency Crystal Photovoltaic Cells to Produce Shingled Photovoltaic Module (슁글드 모듈 제작을 위한 고효율 실리콘 태양전지의 레이저 스크라이빙에 의한 영향)

  • Lee, Seong Eun;Park, Ji Su;Oh, Won Je;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.291-296
    • /
    • 2020
  • The high power of a shingled photovoltaic module can be attributed to its low cell-to-module loss. The production of high power modules in limited area requires high efficiency solar cells. Shingled photovoltaic modules can be made by divided solar cells, which can be produced by the laser scribing process. After dividing the 21% PERC cell using laser scribing, the efficiency decreased by approximately 0.35%. However, there was no change in the efficiency of the solar cell having relatively lower efficiency, because the laser scribing process induce higher heat damages in solar cells with high efficiency. To prove this phenomena, the J0 (leakage current density) of each cell was analyzed. It was found that the J0 of 21% PERC increased about 17 times between full and divided solar cell. However, the J0 of 20.2% PERC increased only about 2.5 times between full and divided solar cell.

Analysis of Output Characteristics of High-Power Shingled Photovoltaic Module due to Temperature Reduction (고출력 슁글드 태양광 모듈의 온도 저감에 따른 출력 특성 분석)

  • Bae, Jae Sung;Yoo, Jang Won;Jee, Hong Sub;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.439-444
    • /
    • 2020
  • An increase in the temperature of photovoltaic (PV) modules causes reduced power output and shorter lifetime. Because of these characteristics, demands for the heat dissipation of PV modules are increasing. In this study, we attached a heat dissipation sheet to the back sheet of a shingled PV module and observed the temperature changes. The PV shingled module was tested under Standard Test Conditions (STCs; irradiance: 1,000 W/㎡, temperature: 25℃, air mass: 1.5) using a solar radiation tester, wherein the temperature of the PV module was measured by irradiating light for a certain duration. As a result, the temperature of the PV module with the heat dissipation sheet decreased by 3℃ compared to that without a heat dissipation sheet. This indicated that the power loss was caused by a temperature increase of the PV module. In addition, it was confirmed that the primary parameter contributing to the reduced PV module output power was the open circuit voltage (Voc).

Electrical Characteristics of Crystalline Silicon Solar Cell Strip for High Power Photovoltaic Modules (고출력 슁글드 모듈 제작을 위한 결정질 실리콘 태양전지 분할 셀의 전기적 특성)

  • Noh, Eun Bin;Bae, Jae Sung;Kim, Jung Hoon;You, Jong Hyun;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.433-437
    • /
    • 2021
  • As the demand for new and renewable energy increases due to the depletion of fossil fuels, solar power generation, a core energy source for new and renewable energy, requires research on solar modules for high output power generation. In this paper, the electrical characteristics of solar cell strip at the edge and in the center of single-crystal silicon having a semi-square shape were analyzed. The cell strip located in the center showed the efficiency increase by 0.26% compared to the cell strip at the edge of the solar cell. A shingled photovoltaic module was manufactured for each cell strip. As a result, the output power of the module using the cell strip located in the center was higher by 0.992%.

Improvement in Power of Shingled Strings by Re-work Process (Re-work 공정을 통한 슁글드 스트링의 출력 개선)

  • Song, Jinho;Jee, Hongsub;Moon, Daehan;Kim, Do-Heyong;Yang, O-Bong;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.7 no.2
    • /
    • pp.51-54
    • /
    • 2019
  • The high density module (HDM) has advantages for its larger active area and smaller current density. This new way of making a photovoltaic (PV) module method has benefit for increasing module power with the same installed area. Because HDM consisted with serially connected PV strings, loss of strings during the fabrication process can increase the overall production cost.1-2 This study investigates the rework conditions of the shingled strings with electrically conductive adhesives (ECA). By heating the electrically connected area of a fabricated string, cured area become soft and a string can be detached for the rework process. After rework process, a refabricated string showed 5~10% increased output power compared to before rework process and reached to the 90~95% output power compare to the undamaged strings.

Fabrication of Perforated Strings for Transparent Silicon Shingled Photovoltaic Modules (투광형 실리콘 슁글드 태양광 모듈을 위한 타공형 스트링 제작)

  • Kim, Han Jun;Park, Min-Joon;Song, Jinho;Jeong, Taewung;Moon, Daehan;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.120-123
    • /
    • 2020
  • Transparent photovoltaics (PV) are used in various applications such as building-integrated photovoltaics (BIPV). However, crystalline silicon (c-Si) is not used for developing transparent PV due to its opaque nature. Here. we fabficate the three holes in 6-inch c-Si solar cells using laser scribing process with an opening area ratio of about 6.8% for transparent c-Si solar modules. Moreover, we make the shingled strings using the perforated cells. Our 7 interconnected shingled string PV cells with 21 holes show a solar to power conversion of 5.721 W. In next work, we will fabricate a transparent c-Si PV module with perforated strings.

A Study on Correlation Peel Strength and the Efficiency of Shingled Modules According to Curing Condition of Electrically Conductive Adhesives (슁글드 모듈에서 경화조건에 따른 ECA 접합강도와 효율의 상관관계에 관한 연구)

  • Jun, Dayeong;Son, Hyoungin;Moon, Jiyeon;Cho, Seonghyeon;Kim, Sung hyun
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.31-35
    • /
    • 2021
  • Shingled module shows high ratio active area per total area due to more efficient packing without inactive space between cells. The module is fabricated by connecting the pre-cut cells into the string using electrically conductive adhesives (ECA). ECAs are used for electric and structural connections to fabricate the shingled modules. In this work, we investigated a correlation between ECA peel strength and the efficiency of pre-cut 5 cells module which are fabricated according to ECA interconnection conditions. The curing conditions are varied to determine whether ECA interconnection properties can affect module properties. As a result of the peel test, the highest peel strength was 1.27 N/mm in the condition of 170℃, the lowest peel strength was 0.89 N/mm in the condition of 130℃. The efficiency was almost constant regardless of the curing conditions at an average of 20%. However, the standard deviation of the fill factor increased as the adhesive strength decreased.