Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.6.5

Electrical Characteristics of Crystalline Silicon Solar Cell Strip for High Power Photovoltaic Modules  

Noh, Eun Bin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Bae, Jae Sung (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Kim, Jung Hoon (Research Institute, Topsun Co.)
You, Jong Hyun (R&D Center, Genesem Inc.)
Lee, Jaehyeong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.6, 2021 , pp. 433-437 More about this Journal
Abstract
As the demand for new and renewable energy increases due to the depletion of fossil fuels, solar power generation, a core energy source for new and renewable energy, requires research on solar modules for high output power generation. In this paper, the electrical characteristics of solar cell strip at the edge and in the center of single-crystal silicon having a semi-square shape were analyzed. The cell strip located in the center showed the efficiency increase by 0.26% compared to the cell strip at the edge of the solar cell. A shingled photovoltaic module was manufactured for each cell strip. As a result, the output power of the module using the cell strip located in the center was higher by 0.992%.
Keywords
Shingled photovoltaic module; Single crystalline silicon; Solar cell strip; Electrical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Sfetsos, Renewable Energy, 27, 163 (2002). [DOI: https://doi.org/10.1016/S0960-1481(01)00193-8]   DOI
2 T. Meyer and J. Luther, Energy Convers. Manage., 45, 2639 (2004). [DOI: https://doi.org/10.1016/j.enconman.2003.12.023]   DOI
3 P. P. Altermatt, J. Comput. Electron., 10, 314 (2011). [DOI: https://doi.org/10.1007/s10825-011-0367-6]   DOI
4 A. W. Blakers, J. Appl. Phys., 71, 5237 (1992). [DOI: https://doi.org/10.1063/1.350580]   DOI
5 M. T. Zarmai, N. N. Ekere, C. F. Oduoza, and E. H. Amalu, Appl. Energy, 154, 173 (2015). [DOI: https://doi.org/10.1016/j.apenergy.2015.04.120]   DOI
6 J. Zhao, A. Wang, E. Abbaspour-Sani, F. Yun, and M. A. Green, IEEE Electron Device Lett., 18, 48 (1997). [DOI: https://doi.org/10.1109/55.553040]   DOI
7 B. Qi and J. Wang, Phys. Chem. Chem. Phys., 15, 8972 (2013). [DOI: https://doi.org/10.1039/C3CP51383A]   DOI
8 N. Wohrle, E. Lohmuller, M. Mittag, A. Moldovan, P. Baliozian, T. Fellmeth, K. Krauss, A. Kraft, and R. Preu, Photovoltaics International (Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany, 2017) p. 48 [https://www.pv-tech.org/technicalpapers/solar-cell-demand-for-bifacial-and-singulatedcell-module-architectures/]
9 M. Mittag, T. Zech, M. Wiese, D. Blasi, M. Ebert, and H. Wirth, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (IEEE, Washington, USA, 2017) p. 1531. [DOI: https://doi.org/10.1109/PVSC.2017.8366260]   DOI
10 W. J. Oh, J. S. Park, S. H. Hwang, S. H. Lee, C. H. Jeong, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 290 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.5.290]   DOI
11 A. Fell, J. Schon, M. Muller, N. Wohrle, M. C. Schubert, and S. W. Glunz, IEEE J. Photovoltaics, 8, 428 (2018). [DOI: https://doi.org/10.1109/JPHOTOV.2017.2787020]   DOI