• Title/Summary/Keyword: 쉘 요소

Search Result 362, Processing Time 0.023 seconds

A Four-node General Shell Element with Drilling DOFs (면내회전자유도를 갖는 4절점 곡면 쉘요소)

  • Chung, Keun-Young;Kim, Jae-Min;Lee, Eun-Haeng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.37-52
    • /
    • 2012
  • In this study, a new 4-node general shell element with 6 DOFs per node is presented. Drilling rotational degrees of freedom are introduced by the variational principle with an independent rotation field. In formulation of the element, substitute transverse shear strain fields are used to avoid shear locking, while four nonconforming modes are applied in the in-plane displacement fields as a remedy for membrane locking. In addition, a direct modification method for nonconforming modes is employed in the numerical implementation of nonconforming modes to represent constant strain states. A 9-points integration rule is adopted for volume integration in the computation of the element stiffness matrix. With the combined use of these techniques, the developed shell element has no spurious zero energy modes, and can represent a constant strain state. Several numerical tests are carried out to evaluate the performance of the new element developed. The test results show that the behavior of the elements is satisfactory.

A Study on the Shape and Thickness Optimizations of Shells Using CAGD through Minimization of Strain Energy with Volume Constraint (CAGD를 사용한 쉘의 형상 및 두께 최적화에 관한 연구 (부피 제약조건을 사용한 변형에너지의 최소화))

  • 이상진;한상을
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.551-561
    • /
    • 1999
  • 본 논문에서는 쉘 최적화에 대한 연구 결과를 기술하였다. 본 연구의 주목적은 쉘 구조물의 최적형상과 두께 분포를 찾는데 있다. 쉘의 변형에너지를 목적함수로 사용하고 초기 쉘의 부피를 제약조건을 고려하였다. 본 연구에서는 Computer-Aided Geometric Design (CAGD) 기법을 이용하여 쉘의 형상과 그 두께 분포를 표현하였고 쉘의 변형에너지를 측정하기 위해서 가변형 도를 채용한 퇴화 쉘 요소(Degenerated Shell Element)를 도입하였다. 최적 값을 구하기 위해서 세 가지 수학적 프로그래밍 기법을 제공하는 프로그램 DOT를 사용하였다. 마지막으로 새로이 개발된 쉘 최적화시스템의 효율성을 최적화예제로써 증명하였다.

  • PDF

Analysis Methods of Wrinkle Prediction for Thin Membrane (얇은 막재료의 주름해석 기법)

  • Bae, Hongsu;Woo, Kyeongsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.865-873
    • /
    • 2013
  • In this paper, numerical methods for wrinkle prediction of thin membrane were studied by finite element analysis. Techniques using membrane and shell elements were applied for triangular membrane. In case of membrane element method, the wrinkling was accounted for by the wrinkle algorithm of property modification, which was implemented to ABAQUS as a user subroutine. In case of shell method, geometrically nonlinear post-buckling analysis was performed to obtain the wrinkle deformation explicitly. The wrinkling deformation was induced by seeding the mesh with a random geometric imperfection. The results were investigated focusing on the mesh convergence and the solution accuracy.

An Improved Degenerated Shell Element for Analysis of Laminated Composite Structures (복합적층구조 해석을 위한 개선된 쉘요소)

  • Choi, Chang Koon;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.1-10
    • /
    • 1991
  • The paper is concerned with the analysis of laminated composite shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements. The resulting non-linear equilibrium equations are solved by the Newton-Raphson method. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

Natural vibrations of laminated anisotropic shells of revolution (적층 이방성 회전체 쉘의 고유진동 해석)

  • 전종균
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.135-141
    • /
    • 1995
  • Any arbitrarily shaped laminated composite shells of revolution can be sum of the conical shell elements. Therefore, finite element model of conical shell element will be developed in this study. To verify consistency and validity of this model, natural vibrations of this model is compared with the analytical solution of cylindrical shell. Herein, an extensive parametric study is presented to assess the modeling capability of this model in class of laminated composite cylinders. It is seen that the proposed model provides highly accurate results with analytical solution. Once development of this conical shell element is done, any arbitrarily shaped composite shells of revolution can be easily analyzed.

  • PDF

Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells (모임지붕형 쌍곡포물선 쉘구조의 유한요소해석)

  • Kim, Seung-Nam;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.87-98
    • /
    • 2012
  • In this study, mechanical role of edge beams in the gabled hyperbolic paraboloid shells was investigated through the comparisons of Finite element(FE) analysis results between the shells structures with and without edge beams. In addition, the effects of roof slope was studied. FE analysis showed that roof loads was directly transferred to the supports at corners by the arch action in the diagonal direction of the shells, thus, less member forces in the edge and ridge beams but higher stresses near supports were estimated than those from the membrane theory. When the edge beams were removed, stress concentration in the shells near the supports and the deflections along the shell edge were increased. Such phenomenon were intensified as the roof slope decrease. Thus, in gable hyperbolic paraboloid shell, the thickness of the shell near supports needs to be increased and careful investigation should be made in the cases when the roof height is low and/or the edge beams are removed.

Shape and Thickness Optimizations of Prismatic Shells Using a Simple Sweep Geometric Model (스위프 기하학적 모델을 사용한 프리즘 쉘의 최적화)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.221-230
    • /
    • 2000
  • Sweep geometric models are based on the notion of moving a curve, surface or solid along some path. Sweeping allows definition of prismatic shell surfaces in a simple way, This paper describes an application of sweep geometric models for the optimization of prismatic shells. This geometric model is integrated with finite element formulations. A nine-node degenerated shell element is adopted to calculate the response of prismatic shells. Several examples we presented to demonstrate the process of optimization. From numerical examples, it is observed that sweep geometric models provide an efficient and reliable way of obtaining optimal solutions for a large class of prismatic shell structures.

  • PDF

A Study of Structural Stability and Dynamics for Functionally Graded Material Plates and Shells using a 4-node Quasi-conforming Shell Element (4절점 준적합 쉘 요소를 이용한 점진기능재료(FGM) 판과 쉘의 구조적 안정 및 진동 연구)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.47-60
    • /
    • 2007
  • In this paper, we investigate the natural frequencies and buckling loads of functionally graded material (FGM) plates and shells, using a quasi-conforming shell element that accounts for the transverse shear strains and rotary inertia. The eigenvalue of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane, bending and shear stiffness of FGM shell element are more complicated combination of material properties than a homogeneous element. In order to validate the finite element numerical solutions, the Navier's solutions of rectangular plates based on the first-order shear deformation theory are presented. The present numerical solutions of composite and sigmoid FGM (S-FGM) plates are proved by the Navier's solutionsand various examples of composite and FGM structures are presented. The present results are in good agreement with the Navier's theoretical solutions.

Model Analysis of Cylindrical Shell using a Scale Model of the Core Support Barrel (노심지지배럴의 축소모형을 이용한 원통형 쉘의 모드 해석)

  • 정명조;송선호;정경훈;김태형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.1
    • /
    • pp.15-27
    • /
    • 1999
  • 본 연구에서는 노심지지배럴을 축솜형의 원통형 쉘로 이상화하여, 그의 모드 특성을 고찰하였다. 쉘의 모드 해석은 사용코드인 ANSYS를 이용하였으며, 일반적으로 사용하고 있는 요소인 SHELL61과 SHELL63을 이용하여 해석을 수행하였고 이들의 특성을 비교하였다. 또한 두께에 따른 모드 특성을 검토하여 쉘 요소의 사용 한계를 규정하였다. 한편 구멍이 있는 쉘과 없는 쉘의 모드 특성을 조사하여 구멍 및 그의 위치가 모드 특성에 미치는 영향을 파악하였다. 이들 모든 결과를 실험 및 이론에 의한 결과와 비교하였다.

  • PDF

Nonlinear Analysis of Functionally Graded Materials Plates and Shells (점진기능재료(FGM) 판과 쉘의 비선형 해석)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.61-71
    • /
    • 2007
  • Navier's and Finite element solutions based on the first-order shear deformation theory are presented for the analysis of through-thickness functionally graded plates and shells. The functionally graded materials are considered: a sigmoid function is utilized for the mechanical properties through the thickness of the isotropic structure which varies smoothly through the plate and shell thickness. The formulation of a nonlinear 9-node Element-based Lagrangian shell element is presented for the geometrically nonlinear analysis. Natural-coordinate-based strains are used in present shell element. Numerical results of the linear and nonlinear analysis are presented to show the effect of the different top/bottom elastic modulus, loading conditions, aspect ratios and side-to-thickness ratios on the mechanical behaviors. Besides, the result according to the variation of the power-law index of isotropic functionally graded structures is investigated.