Shape and Thickness Optimizations of Prismatic Shells Using a Simple Sweep Geometric Model

스위프 기하학적 모델을 사용한 프리즘 쉘의 최적화

  • Published : 2000.06.01

Abstract

Sweep geometric models are based on the notion of moving a curve, surface or solid along some path. Sweeping allows definition of prismatic shell surfaces in a simple way, This paper describes an application of sweep geometric models for the optimization of prismatic shells. This geometric model is integrated with finite element formulations. A nine-node degenerated shell element is adopted to calculate the response of prismatic shells. Several examples we presented to demonstrate the process of optimization. From numerical examples, it is observed that sweep geometric models provide an efficient and reliable way of obtaining optimal solutions for a large class of prismatic shell structures.

스위프 기하학적 모델은 곡선, 면 또는 입방체를 주어진 경로를 따라 이동시킴으로써 기하학적 모델을 생성하는 기법이다. 따라서 스위핑을 사용하면 프리즘 쉘의 곡면을 쉽게 정의할 수 있다. 본 논문은 스위프 기하학적 모델을 프리즘 쉘의 최적화에 적용하는 절차에 대하여 기술하였다. 제시한 스위프 기하학적 모델을 유한요소법과 융합하였고 프리즘 쉘의 반응을 계산하기 위해 9절점 퇴화쉘요소를 채용하였다. 본 연구에서 제시한 최적화과정을 증명하기 위하여 수치예제를 풀어 보았다. 수치예제를 통하여 제시한 스위프 기하학적 모델이 많은 종류의 프리즘 쉘을 최적화하는데 효율적이고 신뢰적인 방법인 것으로 나타났다.

Keywords

References

  1. C/Ph/223/98, Department of Civil Engineering, Univ. of Wales Analysis and Optimization of Shells Lee,S.J.
  2. Optimum structural design Shape optimization and sequential linear programming Zienkiewcz,O.C.;Campbell,J.S.;R.H.Gallagher(Ed.);O.C.Zienkiewicz(Ed.)
  3. C/Ph/168/93, Department of Civil Engineering, Univ. of Wales Analysis and optimal design of structures with adaptivity Ozakca,M.
  4. Engineering with Computers v.9 Form finding of shells by structural optimization Blezinger,K.U.;Ramm,E.
  5. Structural Engineering Review v.5 Structural optimization of variable thickness plates and free form shell structures Rao,N.V.R.;Hinton,E.
  6. Finite Strip Method Cheung,Y.K.;Tham,L.G.
  7. C/Ph/160/92, Department of Civil Engineering, Univ. of Wales Computer Aided Analysis and Optimization of Shell Structures Rao,N.V.R.
  8. Computer and Structures v.52 Analysis and optimisation of prismatic plate and shell structures with curved planform, Part 2-shape optimisation Rao,N.V.R.;Hinton,E.
  9. J. Sound and Vibration v.181 Free vibration analysis and shape optimisation of variable thickness prismatic folded plates and curved shells Hinton,E.;Ozakca,M.;Rao,N.V.R.
  10. The finite element method(4th ed.) Zienkiewicz,O.C.;Taylor,R.L.
  11. Computer Graphics and Geometric Modelling for Engineers Anand,V.B.
  12. 3rd World Congress ISSMO Analysis and optimization of prismatic shell structures using finite element and finite strip formulation Rao,N.V.R.;Lee,S.J.;Sousa,Jr.J.B.;Hinton,E.
  13. Int. J. Num. Meth. Engng. v.14 A simple and efficient finite element for general shell analysis Kanok-Nuchulchai,W.
  14. Int. J. Numer. Method. Eng. v.42 A ninenode assumed strain finite element for large-deformation analysis of laminated shells Lee,S.J.;Kanok-Nuchulchai,W.
  15. The finite element method-Linear static and dynamic finite element analysis Hughes,T.J.R.
  16. Int. J. Numer. Method. Eng. v.47 Shell topology optimization using the layered artificial material model Lee,S.J.;Bae,J.E.;Hinton,E.
  17. Proc. of the 4th international conference on computational strutures technology an the 1st international conference on engineering computational technology-Advances in computational structural mechanics On the reliablity of optimized shells Lee,S.J.;Hinton,E.
  18. DOT manual VMA Engineering
  19. 한국전산구조공학회논문집 v.12 no.4 CAGD를 이용한 쉘의 형상 및 두께최적화에 관한 연구-부피 제약조건을 사용한 변형에너지의 최소화 이상진;한상을
  20. J. Amer. Concr. Inst. v.61 Computer analysis of cylindrical shells Scordelis,A.C.;Lo,K.S.
  21. Journal of Structural Division Direct solution of folded plates De Fries-Skene;Scordelis,A.C.