Proceedings of the Korean Operations and Management Science Society Conference
/
2005.05a
/
pp.172-178
/
2005
순환탐색 알고리즘 및 스택기반 알고리즘 등은 유방향그래프에서 순환과 순환경로를 발견하는 특정 정점으로부터 출발하여 연결된 그래프에서 순환을 탐색하는 것이다. 기존 연구의 단점은 모든 순환을 다 찾아내지지 못하는 경우라든지, 동일한 순환을 중복해서 찾아내는 문제가 있었다. 본 연구에서 제시하는 정점제거 순환탐색 알고리즘은 특정 정점의 순환을 발견한 뒤 그 정점을 삭제하므로 중복된 순환을 발견하지 않고 모든 순환을 찾을 수 있다. 또한 순환을 발견했을 때, 순환경로를 출력하는데 있어서 스택의 인덱스를 이용해, 저장경로를 탐색하지 않고 출력하는 방법을 제안하였다. 실험에서는 임의의 정점과 간선을 생성하여 그래프로 만들고, 각 알고리즘에 따른 모든 정점을 찾을 수 있는지, 그래프 상황에 따라 어떠한 장단점이 있는지, 간선이 많아질수록 인덱스 순환탐색 알고리즘보다 탐색시간이 얼마나 차이를 보이는지를 확인하였다. 웹 구조처럼 일정한 크기의 웹페이지와 많은 수의 링크가 존재하는 그래프에서 정점제거 순환탐색 알고리즘이 순환을 찾는데 적합하다는 것을 입증했다.
This paper presents a combination of the generalized Cascade Correlation and generalized Recurrent Cascade Correlation learning algorithms. The new network will be able to grow with vertical or horizontal direction and with recurrent or without recurrent units for the quick solution of the pattern classification problem. The proposed algorithm was tested learning capability with the sigmoidal activation function and hyperbolic tangent activation function on the contact lens and balance scale standard benchmark problems. And results are compared with those obtained with Cascade Correlation and Recurrent Cascade Correlation algorithms. By the learning the new network was composed with the minimal number of the created hidden units and shows quick learning speed. Consequently it will be able to improve a learning capability.
Due to the advance of e-commerce systems, the number of people using online shopping and products has significantly increased. Therefore, the need for an accurate recommendation system is becoming increasingly more important. Recurrent neural network is a deep-learning algorithm that utilizes sequential information in training. In this paper, an evaluation is performed on the application of recurrent neural networks to recommendation systems. We evaluated three recurrent algorithms (RNN, LSTM and GRU) and three optimal algorithms(Adagrad, RMSProp and Adam) which are commonly used. In the experiments, we used the TensorFlow open source library produced by Google and e-commerce session data from RecSys Challenge 2015. The results using the optimal hyperparameters found in this study are compared with those of RecSys Challenge 2015 participants.
The query of the K closest object pairs between two object sets frequently occurs at recently retrieval systems. The circular location property of objects should be considered for efficiently process queries finding such a K nearest object pair. In this paper, we propose the optimal algorithm finding the K object pairs which are closest to each other in a search space with a circular domain and show its performance by experiments. The proposed algorithm optimizes the cost of finding the K nearest object pairs by using the circular search distances which is much applied the circular location property.
본 논문에서는 주어진 문제의 루프 알고리즘으로부터 시스톨릭 어레이 구현이 용이한 정규 순환 방정식으로의 자동적 유도를 위한 대수적인 방법과 조건을 제시하였다. 이를 위하여 계산점 집합과 순차 정렬 벡터를 구하고, 행렬의 커널을 이용하여 자료 흐름 벡터를 찾았으며, 정규 파이프라이닝 가능성 조건을 제시하였다 그리고 각 계산점에 대한 배열 원소의 초기 입력 위치를 구하였다. 본 논문에서 제시된 방법을 사용하면 주어진 루프 알고리즘을 정규 순환방정식으로 자동적으로 유도 할 수 있으며, 주어진 알고리즘이 정규 순환 방정식으로 유도될 수 있는지를 검사할 수 있다.
기존에 만들어진 미로 생성 알고리즘은 ‘Perfect 미로’를 지향하는 알고리즘이다. Perfect 미로는 두 점사이의 path가 유일하며, 순환되지 않고, 막힌공간이나, 접근할 수 없는 공간이 없는 미로를 말한다. 이런 미로 알고리즘을 사용하여 만든 미로는, 정형적인 형태를 띄게 된다. 이 알고리즘들을 아무런 수정 얼이, RPG/액션/시뮬레이션/전략게임 둥에 사용하게 되면, 게임 캐릭터는, 유일하면서 막힘이 빈번한 path 안에서 부자연스런 움직임을 가지게 될 것이다. 그래서 보다 넓은 면적을 탐험할 수 있고, 전진성을 높여주기 위하여 여러개의 path와 순환을 허용하는 알고리즘을 제안하게 되었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.13-16
/
2016
본 논문에서는 순환 신경망을 이용하여 동영상에서의 배경과 전경을 구분하는 알고리즘을 제안한다. 순환 신경망은 일련의 순차적인 입력에 대해서 내부의 루프(loop)를 통해 이전 입력에 의한 정보를 지속할 수 있도록 구성되는 신경망을 말한다. 순환 신경망의 여러 구조들 가운데, 우리는 장기적인 관계에도 반응할 수 있도록 장단기 기억 신경망(Long short-term memory networks, LSTM)을 사용했다. 그리고 동영상에서의 시간적인 연결 뿐 아니라 공간적인 연관성도 배경과 전경을 판단하는 것에 영향을 미치기 때문에, 공간적 순환 신경망을 적용하여 내부 신경망(hidden layer)들의 정보가 공간적으로 전달될 수 있도록 신경망을 구성하였다. 제안하는 알고리즘은 기본적인 배경차분 동영상에 대해 기존 알고리즘들과 비교할만한 결과를 보인다.
Park, Jung-Hoon;Jung, Jun-Hyung;Son, Yeong-Deuk;Kim, Jang-Mok
Proceedings of the KIPE Conference
/
2017.07a
/
pp.168-169
/
2017
본 논문에서는 ZCMV(zero common mode voltage) PWM을 사용하는 병렬형 3상 3레벨 NPC 컨버터의 DC단 전압의 불평형 제어를 이용한 순환전류 저감 알고리즘을 제안한다. 이상적으로 ZCMV PWM은 공통 모드 전압을 발생하지 않지만, 초기 운전 및 데드타임과 같은 실제적인 문제로 인해 공통 모드 전압이 발생한다. 발생한 공통 모드 전압은 미세한 순환전류를 발생시키며 이는 컨버터의 효율을 감소시킨다. 따라서, 본 논문에서는 DC단 전압 불평형 제어를 이용하여 순환전류를 저감하는 제어 알고리즘을 제안한다. 상, 하단 DC 전압의 불평형은 공통 모드 전압을 발생시키며 이를 통해 미세하게 발생한 순환전류를 저감하여 컨버터의 효율을 향상 시킬 수 있다. 제안한 알고리즘은 시뮬레이션을 통해 타당함을 검증하였다.
Myung, Se Chang;Jeon, Ki Jun;Ko, Byung Hoon;Lee, Seong Ro;Kim, Kwang Soon
The Journal of Korean Institute of Communications and Information Sciences
/
v.39C
no.8
/
pp.637-642
/
2014
In this paper, we propose a efficient shift index searching algorithm for design of the block LDPC codes. It is combined with the message-passing based cycle search algorithm and ACE algorithm. We can determine the shift indices by ordering of priority factors which are effect on the LDPC code performance. Using this algorithm, we can construct the LDPC codes with low complexity compare to trellis-based search algorithm and save the memory for storing the parity check matrix.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.5
/
pp.552-559
/
2005
Recurrent neural networks(RNNs) trained with gradient based such as real time recurrent learning(RTRL) has a drawback of slor convergence rate. This algorithm also needs the derivative calculation which is not trivialized in error back propagation process. In this paper a derivative free Kalman filter, so called the unscented Kalman filter(UKF), for training a fully connected RNN is presented in a state space formulation of the system. A derivative free Kalman filler learning algorithm makes the RNN have fast convergence speed and good tracking performance without the derivative computation. Through experiments of nonlinear channel equalization, performance of the RNNs with a derivative free Kalman filter teaming algorithm is evaluated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.