1 |
S. J. julier and J. K. Uhlmann, ' A new extension of the Kalman filter to nonlinear systems,' in Proceeding of AeroSence: The 11th International Symposium on Aerospace /Defence Sensing, Simulation and Controls, 1997
|
2 |
S. Haykin, Adaptive Filter Theory, 4th Ed. Upper Saddle River, NJ Prentice Hall, 2002
|
3 |
S. Chen, G. J. Gibson, B. Mulgrew, and S. McLaughlin, 'Adaptive equalization of finite nonliner channels using multilayer perceptrons, ' Signal Processing, vol. 20, pp. 107-119, 1990
|
4 |
S. Julier, J. Uhlmann, and H. F. Durrant- Whyte, ' A new method for the nonlinear transformation of means and covaroances in filters and estimators,' IEEE Transaction on Auto matic Control, vol. 45, pp. 477-482, March 2000
DOI
ScienceOn
|
5 |
E. A. Wan and R van der Merwe, 'The unscented Kalman filter,' in kalman filtering and neural networks, Edited by S. Haykin. John Wiley and Sons, Inc., 2001
|
6 |
C.Cowan and Semnani, 'Time-variant equalization using a novel non-linear adaptive structure,' International Journal of Adaptive Control and Signal Processing, vol. 12, no.2, pp. 195-206, 1998
|
7 |
R J. Williams and D. Ziper, 'A learning algorithms for continually running fully recurrent neural networks,' Neural Computation, vol. 1, pp.270-280, 1989
DOI
|
8 |
M. Solazzi, A. Uncini, E. D. Di Clauio, and R.Parisi, 'Complex discriminative learning Bayesian neural equalizer,' Signal Processing, vol. 81, pp. 2493-2502, 2001
|
9 |
E. A. Wan and R van der Merwe, 'The unscented Kalman filter for nonlinear estimation,' in Proceeding of the IEEE 2000 daptiue Systems for Signal Processing, Communications and Control Symposium/As -SPCC), pp. 153-158, 2000
|
10 |
S. Haykin, Nerual Networks: a Comprehensive Foundation, 2nd Ed. Upper Saddle River, NJ: Prentice Hall, 1999
|
11 |
P. J. Werbos, 'Back-propagation through time: What it does and how to do it,' Proceedings of the IEEE, vol. 78, pp.1550-1560, October 1990
|
12 |
H. R. Jiang and K. S. Kwak, 'On modified complex recurrent neural network adaptive equalizer,' Journal of Circuits, Systems, and Computers, vol. 11, no. 1, pp. 93-101, 2002
DOI
|
13 |
B. Hammer and J. J. Steil, 'Tutorial: Perspective on learning with RNNs,' in Proc. of the European Symposium on Artifical Neural Networks(ESANN), pp.357-369, 2002
|
14 |
S. Chen. B. Mulgrew, and S. McLaughlin, 'Adaptive Bayesian equalizer with decision feedback,' IEEE Transactions on Signal Processing, vol.41, pp. 2918-2927, September 1993
|
15 |
S. Ong, C. You, S. Choi, and D. Hong, ' A decision feedback recurrent neural equalizer as an infinte impulse response filter,' IEEE Transcation on Signal Processing, vol. 45,pp. 2851 - 2858, November 1997
|
16 |
A. F. Atiya and A. G. Parlos, 'New results on recurrent network traning: Unifying the algorithms and accelerating convergence,' IEEE Transactions on Neural Networks, vol.11, pp.697-709, May 2000
DOI
ScienceOn
|
17 |
G. Kechriotis, E. Zervas, and E. S. Manolakos, 'Using recurrent neural networks for adaptive communication channel equalization,' IEEE Transaction on Neural Networks vol, 5, pp. 267-278, March 1994
DOI
ScienceOn
|
18 |
R. Parisi, E. D. Di Claudio, G. Orlandi, and B.D.Rao, 'Fast adaptive digital equalization by recurrent neural networks,' IEEE Transactions on Signal Processing, vol,45, pp. 2731- 2739, November 1997
|