• Title/Summary/Keyword: 수화 특성

Search Result 889, Processing Time 0.031 seconds

Effect of soaking temperature on soaking characteristics of soybean (Glycine max) during rehydration process (콩의 수화 공정에서 수화 온도에 따른 콩(Glycine max)의 수화 및 단백질 용출 특성)

  • Park, Hyeon Woo;Han, Won Young;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.251-255
    • /
    • 2019
  • The effect of soaking temperature on the moisture uptake and the protein loss of soybeans during soaking process investigated. As the soaking temperature increased, the soaking rate significantly increased and Peleg model was suitable for describing the soaking characteristics of the soybean with high $R^2$ values (>0.991). The soaking time to achieve the target moisture content of soybean (130%) was estimated to be 12.6, 3.11 and 2.31 h at 25, 35 and $45^{\circ}C$, respectively. Peleg model well described the protein loss kinetics of soybean during soaking with high $R^2$ values (>0.941). The results showed that the protein loss of soybean at the target moisture content were 35.2, 93.1 and 103.0 mg/g at 25, 35 and $45^{\circ}C$, respectively. In this study, the optimum soaking condition for quality of soybean was 12.6 h of soaking time at $25^{\circ}C$.

A Study on Semantic Logic Platform of multimedia Sign Language Content (멀티미디어 수화 콘텐츠의 Semantic Logic 플랫폼 연구)

  • Jung, Hoe-Jun;Park, Dea-Woo;Han, Kyung-Don
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.199-206
    • /
    • 2009
  • The development of broadband multimedia content, a deaf sign language sign language is being used in education. Most of the content used in sign language training for Hangul word representation of sign language is sign language videos for the show. For the first time to learn sign language, sign language users are unfamiliar with the sign language characteristics difficult to understand, difficult to express the sign is displayed. In this paper, online, learning sign language to express the sign with reference to the attributes, Semantic Logic applying the sign language of multimedia content model for video-based platform is designed to study.

A Fundamental Study on the Correlationship between Hydration Heat and Autogenous Shrinkage of High Strength Concrete at an Early Age (초기재령 고강도콘크트의 수화발열과 자기수축 특성의 상관관계에 관한 기초적 연구)

  • Kim, Gyu-Yong;Lee, Eui-Bae;Koo, Kyung-Mo;Choi, Hyeong-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.593-600
    • /
    • 2008
  • In this study, to analyze the correlation between hydration heat and autogenous shrinkage of high strength concrete at an early age, hydration heating velocity and autogenous shrinking velocity as quantitative coefficients which represent the main properties of hydration heat and autogenous shrinkage were proposed. Two coefficients were calculated by statistical analysis and were equal with the regression coefficient. The complemented semi-adiabatic temperature rise test as test method to evaluate the hydration heat and autogenous shrinkage of concrete were proposed. In results of proposed test and analysis method, it was possible that early age properties of hydration heat and autogenous shrinkage of concrete were expressed numerically, and autogenous shrinkage was represented by equation with coefficients of hydration heat.

The statistical method for quantitative analysis of hydration heat and autogenous shrinkage of concrete (콘크리트 수화발열 및 자기수축 특성의 정량적 분석을 위한 통계적 방법)

  • Lee, Eui-Bae;Lee, Hyung-Jun;Koo, Kyung-Mo;Na, Chul-Sung;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.645-648
    • /
    • 2008
  • In this study, to evaluate the correlation between hydration heat and autogenous shrinkage of high strength concrete in early age, statistical method present numerically hydration heat and autogenous shrinkage was studied. First of all, hydration heating velocity and autogenous shrinking velocity as quantitative coefficients which represent the main properties of hydration heat and autogenous shrinkage were proposed. Two coefficients were calculated by statistical analysis and were equal with the regression coefficient. To verify the validity of the proposed statistical analysis method, data of hydration heat and autogenous shrinkage gathered by a real experiment were analyzed by it. In results, properties of hydration heat and autogenous shrinkage of high strength concrete in early age were analyzed quantitatively. Also evaluation and comparison of the correlation between hydration heat and autogenous shrinkage with numerical value were possible.

  • PDF

PWR 냉각재계통 방사능 제거에 관한 정지수화학 특성 평가

  • 나정원;성기웅;성기방;강덕원;정홍호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.363-368
    • /
    • 1997
  • PWR 원전에서는 계획예방 정지운전시 효과적인 정지수화학 제어에 의해 일차계통 방사능 준위를 감소시키고 작업종사자의 피폭을 최소화하기 위해 정지운전 자료에 대한 보다 정확한 해석이 필요하다. 본 연구에서는 국내 PWR 원전 주기(A호기의 I 및 II주기와 B호기의 II주기)별 정지수화학 특성을 SCALP(Shutdown chemistry CALculation Program)프로그램으로 계산하고 정지운전 기간중 일차냉각재계통에서 제거되는 방사능량에 영향을 미치는 정지수화학 특성을 주요 인자별로 평가하였다.

  • PDF

Properties of Hydration Heat and Autogenous Shrinkage of High-Strength Mass Concrete with Latent Heat Material (잠열재를 사용한 고강도 매스 콘크리트의 수화열 및 자기수축 특성)

  • Lee, Eui-Bae;Koo, Kyung-Mo;Nam, Jeong-Soo;Kim, Young-Sun;Kim, Young-Duck;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.315-316
    • /
    • 2009
  • In this study, latent heat material was used to reduce hydration heating velocity of high-strength mass concrete. And the properties of hydration heat and autogenous shrinkage, and the relationship between hydration heat and autogenous shrinkage of high-strength mass concrete were numerically investigated.

  • PDF

Effect of Gypsum on Hydration Properties of Natural Hydraulic Lime (천연 수경성 석회의 수화특성에 미치는 석고의 영향)

  • Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Kye-Hong;Cho, Jin-Sang;Ahn, Ji-Whan;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.12-20
    • /
    • 2015
  • In this study, change of hydration property with contents and type of gypsum in ternary natural hydraulic lime containing blast furnace slag and gypsum was investigated. Anhydrite, hemihydrate and dihydrate were added 3 % and 10 %, respectively in natural hydraulic lime adding blast furnace slag 20 %. Hydration and physical behavior due to solubility and reactivity of different types of gypsum were analyzed in early hydration. As a result of analysis of hydration properties, in all samples, hydrates such as ettringite and C-S-H were produced in early hydration, and amount of hydrates with increase of hydration time was increased. In the case of compressive strength, when contents of gypsum are 3 %, it was higher compressive strength than other specimens. At hydration 28 days, for addition of anhydrite and hemihydrate, compressive strength was more than adding dihydrate.

Properties of Hydration Heat with Compressive Strength Level of High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트의 압축강도 수준에 따른 수화발열 특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Lee, Jae Nam;Kim, Byoung Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.531-541
    • /
    • 2009
  • The research analyzes and investigates conventional concrete, hydration heat, set, and mechanical properties by making high flowing self-compacting concretes of binary blend and ternary blend as one of evaluations about the properties of the hydration heat of high flowing self-compacting concrete with a strength of 30, 50, and 70 MPa. In addition, it estimates concrete adiabatic temperatures by calculating a thermal property value of powder obtained by measuring a heat evolution amount for powder used in concrete, a thermal property value of concrete obtained by conducting a simple adiabatic temperature test, and a normal thermal property value of material used in concrete, using a simple equation. Moreover, it analyzes and investigates the hydration heat property of high flowing self-compacting concrete and the thermal stress caused by hydration heat by conducting a 3D temperature stress analysis for the hydration heat and the adiabatic temperature obtained by temperature analysis, using MIDAS CIVIL 06 program.

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

Effects of Specimen Shape on Hydration Heat and Autogenous shrinkage at an early (시험체 형상에 따른 고강도 콘크리트의 수화열 및 자기수축 초기특성 분석)

  • Lee, Eui-Bae;Koo, Kyung-Mo;Kim, Young-Sun;Kim, Young-Duck;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.915-918
    • /
    • 2008
  • Hydration heat and autogenous shrinkage are generated essentially by the same hydration. Many researchers have studied the close relationship between hydration temperature and autogenous shrinkage but hardly any research has been undertaken to explain the specific numerical relation. In this study, early age properties of hydration heat and autogenous shrinkage of specimen whose section size was changed were analyzed, and relationship between hydration heat and autogenous shrinkage was investigated. In the results of the study, inner temperature and autogenous shrinkage increased as the section size increased. And rise and rise ratio of hydration temperature and autogenous shrinkage in hydration heating section and autogenous shrinking section are increased too. Temperature rise and autogenous shrinkage rise increased respectively, as hydration heating velocity and autogenous shrinking velocity increased. And autogenous shrinkage rise and autogenous shrinking velocity increased as hydration heating velocity increased.

  • PDF