• Title/Summary/Keyword: 수화 액정형 베시클

Search Result 7, Processing Time 0.017 seconds

Effects of Edge Activator on the Droplet Size and Skin Permeation of Hydrated Liquid Crystalline Vesicles (Edge Activator가 수화 액정형 베시클의 입자크기와 피부 침투에 미치는 영향)

  • Lee, Seo Young;Lim, Yoon Mi;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.679-684
    • /
    • 2017
  • Hydrated liquid crystalline vesicles incorporating a edge activator, which confers flexibility to the vesicle membranes, were prepared and niacinamide was encapsulated in them. The formation of liquid crystalline phases and their thermal phase transitions were investigated by polarized optical microscopy and differential scanning calorimetry (DSC), respectively. Droplet sizes of the vesicles were reduced to several tens of nanometers by incorporating edge activators, such as sodium deoxycholate, lysolecithin, or polysorbate 80. The amount of niacinamide permeated into a pig skin increased greatly using the hydrated liquid crystalline vesicles compared to the case where niacinamide was applied in an aqueous solution state. The vesicles incorporating 10% sodium deoxycholate increased the amount of niacinamide permeated nearly four times. These results suggest that edge activators are effective in improving the skin permeability of vesicles.

Design Optimization of Hydrated Liquid Crystalline Vesicles Containing a High Content of Ceramide Using DOE (실험 계획법을 적용한 세라마이드 고함량의 수화 액정형 베시클의 최적설계)

  • Shin, Juyeong;Jin, Byung-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.623-631
    • /
    • 2022
  • Using the design of experiment (DOE), factors affecting the particle size of hydrated liquid crystalline vesicles containing a high content of ceramide were analyzed and the mixture composition was optimized. Manufacturing temperature, amount of ethanol, and ultrasonic time were selected as the main variables affecting the droplet size of the vesicles, and the effect of these variables on the droplet size was examined through the signal to noise (S/N) ratios of Taguchi method and ANOVA analysis. In addition, mixture composition experiments of three lipid components constituting the vesicle membrane, hydrogenated phosphatidyl choline (HPC), cholesterol (Chol), and ceramide (Cer), were performed according to the simplex central design matrix of the mixture. Regression analysis was conducted with the experimental data to obtain a model equation, and the optimal mixing composition of the three lipid components to minimize the vesicle droplet size was determined as HPC (0.6), Chol (0.1), and Cer (0.3).

Preparation of Hydrated Liquid Crystalline Vesicle Using Mutual Self-Association between Ceramide and Phospholipid (인지질/세라마이드 혼합물의 상호적 자가회합 특성을 활용한 수화 액정형 베시클 제조)

  • Park, Min Seon;Choi, Jeong Won;Lee, Seol-Hoon;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.545-551
    • /
    • 2020
  • An attempt was made to prepare hydrated liquid crystalline vesicles by utilizing a mutual self-assembly between phospholipid and ceramide. When an edge activator was added to the mixture of phospholipid and ceramide, it was possible to prepare a vesicle containing a high content of poorly soluble ceramide. In this study, we investigated changes in structural and thermal behaviors of the hydrated liquid crystalline phase according to the mixed composition between phospholipid, ceramide, and sodium deoxycholate. Also, both the droplet size of the vesicles with different composition and stability of the vesicle dispersion solution were observed. From results of the experiments, by increasing the ratio of ceramide up to 70% in the mixture between phospholipid and ceramide, a formulation containing 3.5 wt% of ceramide in the vesicle dispersion solution could be obtained.

Preparation of Hydrated Liquid Crystalline Vesicles Containing High Content of Ceramide using a Solubilizer (가용화제를 활용한 세라마이드 고함량의 수화 액정형 베시클 개발)

  • Park, Min Seon;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.541-546
    • /
    • 2021
  • Hydrated liquid crystalline vesicles containing a high content of ceramide were prepared by constituting an optimal composition in which ceramides can be mutually self-associated with phospholipid and cholesterol. From the result of manufacturing various vesicles with different component composition, when the edge activator sodium deoxycholate (SDOC) and the solubilizer PEG-60 hydrogenated castor oil (HCO 60) were mixed to form vesicles, the smallest nano-sized particles were produced and the vesicle dispersion solution was weakly acidic and maintained the most stable state. In addition, it was confirmed through polarized light microscopy and thermal analysis that the addition of SDOC and HCO 60 had an effect on the inhibition of crystallinity of lipid components such as ceramide. The stability of the vesicle dispersion solution was maintained without change in appearance and viscosity even after long-term storage at high temperature for eight weeks.

Preparation of Nano Flexible Vesicles Encapsulating Adenosine and Composition Optimization by Taguchi Method (아데노신을 포집한 나노 플렉시블 베시클 제조 및 다구찌 방법에 의한 조성의 최적화)

  • Lee, Seo Young;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.487-492
    • /
    • 2019
  • Nano flexible vesicles encapsulating an adenosine, an active ingredient for anti-wrinkle, were prepared for the transdermal delivery. The nano flexible vesicle is usually composed of phospholipid, ethanol, and lysolecithin, which is a type of liquid crystalline one made by dispersing the liquid crystalline phase formed through a hydration process into a water phase. In this study, the Taguchi method, one of the experimental design methods, was applied to investigate the factors affecting the vesicle droplet size. Signal to noise (S/N) ratios for the smaller the better characteristics of vesicle droplet size were calculated using the Taguchi orthogonal array. The composition of ethanol and lysolecithin in the vesicle constituents and the amount of aqueous solution added in the hydration process were main factors that had a great effect on the vesicle droplet size and ANOVA test showed that these factors were significant at 95% confidence level.

A Study on the Factors Affecting Entrapment Efficiency and Particle Size of Ethosomes (Ethosomes의 포집효율과 입자크기에 영향을 주는 인자에 관한 연구)

  • Jin, Byung Suk;Lee, Sang Mook;Lee, Kwang Hee
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • Ethosome is a liquid crystalline vesicle prepared by hydration of ethanol-dissolved lecithin with a solution containing hydrophilic components. Investigation of factors affecting the entrapment efficiency and particle size of ethosomes was carried out, because the high entrapment efficiency and small particle size are prerequisite in developing ethosomes as a drug delivery system. The variations of properties of ethosomes with constituent composition and preparation method were examined using a calcein as a hydrophilic marker. It was observed that the amount of ethanol and calcein solution, phosphatidyl choline content in lecithin, preparation temperature, stirring rate, and PBS addition method had a considerable effect on the properties of ethosome. Sonication treatment resulted in the reduction of entrapment efficiency of ethosome, which was due to the release of entrapped components in the vesicles by strong sonication vibration.

Characteristics of BGsome-Coated Illite as a Face Powder (BGsome이 코팅된 일라이트 및 이를 함유한 페이스 파우더의 특성)

  • Lim, Jin Kyong;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.126-131
    • /
    • 2013
  • BGsome coating on the surface of illite powder was attempted to impart skin affinity and improve various characteristics of the powder for makeup cosmetics. BGsome is a type of hydrated liquid crystalline vesicles prepared by the hydration of 1,3-butylene glycol (BG) dissolved lecithin. BGsome droplets were coated through wet process and the coated powders were analyzed by TGA, SEM, and particle size measurements. Effect of BGsome coating on the physical properties, such as flow-ability, dispersibility, spreadability, and adhesion, were examined. The repose angle of BGsome-coated illite was decreased, which means that BGsome coating improves the flowability of the powder. Dispersibility, spreadability, and adhesion of the coated illite were also improved remarkably. The result of adhesion tests showed that the BGsome-coated illite was evenly adhered onto artificial leather surface with almost no lumps. The flowability, dispersibility, spreadability and adhesion of face powders containing the BGsome-coated illite were also improved.