Browse > Article
http://dx.doi.org/10.14478/ace.2017.1077

Effects of Edge Activator on the Droplet Size and Skin Permeation of Hydrated Liquid Crystalline Vesicles  

Lee, Seo Young (Department of Applied Chemistry, Dongduk Women's University)
Lim, Yoon Mi (Department of Applied Chemistry, Dongduk Women's University)
Jin, Byung Suk (Department of Applied Chemistry, Dongduk Women's University)
Publication Information
Applied Chemistry for Engineering / v.28, no.6, 2017 , pp. 679-684 More about this Journal
Abstract
Hydrated liquid crystalline vesicles incorporating a edge activator, which confers flexibility to the vesicle membranes, were prepared and niacinamide was encapsulated in them. The formation of liquid crystalline phases and their thermal phase transitions were investigated by polarized optical microscopy and differential scanning calorimetry (DSC), respectively. Droplet sizes of the vesicles were reduced to several tens of nanometers by incorporating edge activators, such as sodium deoxycholate, lysolecithin, or polysorbate 80. The amount of niacinamide permeated into a pig skin increased greatly using the hydrated liquid crystalline vesicles compared to the case where niacinamide was applied in an aqueous solution state. The vesicles incorporating 10% sodium deoxycholate increased the amount of niacinamide permeated nearly four times. These results suggest that edge activators are effective in improving the skin permeability of vesicles.
Keywords
edge activator; hydrated liquid crystalline vesicle; niacinamide; skin permeation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M.-I. Yeh, H.-C. Huang, J.-H. Liaw, M.-C. Huang, T.-H. Wu, K.-F. Huang, and F.-L. Hsu, Ethosomes in hair dye products as carriers of the major compounds of black tea extracts, Int. J. Dermatol., 52, 868-875 (2013).   DOI
2 C. K. Song, P. Balakrishnan, C.-K. Shim, S.-J. Chung, S. Chong, and D.-D. Kim, A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/ in vivo evaluation, Colloids Surf. B, 92, 299-304 (2012).   DOI
3 S. M. Lee, M. J. Choi, Y. M. Lee, and B. S. Jin, Preparation and characterization of ethosome containing hydrophobic flavonoid luteolin, Appl. Chem. Eng., 21, 40-45 (2010).
4 Y. M. Lim, Y. K. Jun, S. Park, and B. S. Jin, Coencapsulation of L-ascorbic acid and $\alpha$-Tocopherol in ethosomes their properties, Appl. Chem. Eng., 25, 368-373 (2014).   DOI
5 B. S. Jin, S. M. Lee, and K. H. Lee, A study on the factors affecting entrapment efficiency and particle size of ethosomes, Appl. Chem. Eng., 17, 138-143 (2006).
6 N. Heldt, J. Zhao, S. Friberg, Z. Zhang, G. Slack, and Y. Li, Controlling the size of vesicles prepared from egg lecithin using a hydrotrope, Tetrahedron, 56, 6985-6990 (2000).   DOI
7 G. El Maghraby, A. Willams, and B. Barry, Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes, Int. J. Pharm., 276, 143-161 (2004).   DOI
8 S.-H. Tung, Y.-E. Huang, and S. R. Raghavan, A new reverse wormlike micellar system: Mixtures of bile aalt and lecithin in organic liquids, J. Am. Chem. Soc., 128, 5751-5756 (2006).   DOI
9 D. H. Bae and J. S. Shin, Silicone Nanoemulsion stabilized with hydrogenated lecithin, Appl. Chem. Eng., 11, 522-528 (2000).
10 J. Bhattacharjee, G. Verma, V. Aswal, A. A. Date, M. S. Nagarsenker, and P. Hassan, Tween 80 - Sodium deoxycholate mixed micelles: Structural characterization and application in doxorubicin delivery, J. Phys. Chem. B, 114, 16414-16421 (2010).   DOI
11 E. Touitou, N. Dayan, L. Bergelson, B. Godin, and M. Eliaz, Ethosomes-novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties, J. Control. Release, 65, 403-418 (2000).   DOI
12 M. N. Jones, The surface properties of phospholipid liposome systems and their characterization, Adv. Colloid Interface Sci., 54, 93-128 (1995).   DOI
13 M. Jadupati, G. Amites, and N. A. Kumar, Transfersome: An opportunistic carrier for transdermal drug delivery system, Int. Res. J. Pharm., 3, 35-38 (2012).
14 G. M. M. El Macghraby, A. C. Williams, and B. W. Barry, Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes, J. Pharm. Pharmacol., 53, 1311-1322 (2001).   DOI
15 M. Trotta, E. Peira, F. Debernardi, and M. Gallarate, Elastic liposomes for skin delivery of dipotassium glycyrrhizinate, Int. J. Pharm., 241, 319-327 (2002).   DOI
16 M. M. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Lipid vesicles for skin delivery of drugs: Reviewing three decades of research, Int J. Pharm., 332, 1-16 (2007).   DOI
17 I. M. Aldulbaqi, Y. Darwis, N. A. K. Khan, R. A. Assi, and A. A. Khan, Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and cliNAal trials, Int. J. Nanomed., 11, 2279-2304 (2016).
18 E. Touitou, B. Godin, and C. Weiss, Enhanced delivery of drugs into and across the skin by ethosomal carriers, Drug Dev. Res., 50, 406-415 (2000).   DOI
19 M. Bragagni, N. Mennini, F. Maestrelli, M. Cirri, and P. Mura, Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib, Drug Deliv., 19, 354-361 (2012).   DOI
20 M. Kirjavainen, A. Urtti, I. Jaaskelainen, T. Suhonen, P. Paronen, R. Valjakka-Koskela, J. Kiesvaara, and J. Monkkonen, Interaction of liposomes with human skin in vitro-the influence of lipid composition and structure, Biochim. Biophys. Acta, 1304, 179-189 (1996).   DOI
21 D. Verma, S. Verma, G. Blume, and A. Fahr, Particle size of liposomes influences dermal delivery of substances into skin, Int. J. Pharm., 258, 141-151 (2003).   DOI