• Title/Summary/Keyword: 수학 학습 능력

Search Result 576, Processing Time 0.025 seconds

Features of sample concepts in the probability and statistics chapters of Korean mathematics textbooks of grades 1-12 (초.중.고등학교 확률과 통계 단원에 나타난 표본개념에 대한 분석)

  • Lee, Young-Ha;Shin, Sou-Yeong
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.4
    • /
    • pp.327-344
    • /
    • 2011
  • This study is the first step for us toward improving high school students' capability of statistical inferences, such as obtaining and interpreting the confidence interval on the population mean that is currently learned in high school. We suggest 5 underlying concepts of 'discretion of contingency and inevitability', 'discretion of induction and deduction', 'likelihood principle', 'variability of a statistic' and 'statistical model', those are necessary to appreciate statistical inferences as a reliable arguing tools in spite of its occasional erroneous conclusions. We assume those 5 concepts above are to be gradually developing in their school periods and Korean mathematics textbooks of grades 1-12 were analyzed. Followings were found. For the right choice of solving methodology of the given problem, no elementary textbook but a few high school textbooks describe its difference between the contingent circumstance and the inevitable one. Formal definitions of population and sample are not introduced until high school grades, so that the developments of critical thoughts on the reliability of inductive reasoning could not be observed. On the contrary of it, strong emphasis lies on the calculation stuff of the sample data without any inference on the population prospective based upon the sample. Instead of the representative properties of a random sample, more emphasis lies on how to get a random sample. As a result of it, the fact that 'the random variability of the value of a statistic which is calculated from the sample ought to be inherited from the randomness of the sample' could neither be noticed nor be explained as well. No comparative descriptions on the statistical inferences against the mathematical(deductive) reasoning were found. Few explanations on the likelihood principle and its probabilistic applications in accordance with students' cognitive developmental growth were found. It was hard to find the explanation of a random variability of statistics and on the existence of its sampling distribution. It is worthwhile to explain it because, nevertheless obtaining the sampling distribution of a particular statistic, like a sample mean, is a very difficult job, mere noticing its existence may cause a drastic change of understanding in a statistical inference.

  • PDF

A Benchmark of Micro Parallel Computing Technology for Real-time Control in Smart Farm (MPICH vs OpenMP) (제목을스마트 시설환경 실시간 제어를 위한 마이크로 병렬 컴퓨팅 기술 분석)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.161-161
    • /
    • 2017
  • 스마트 시설환경의 제어 요소는 난방기, 창 개폐, 수분/양액 밸브 개폐, 환풍기, 제습기 등 직접적으로 시설환경의 조절에 관여하는 인자와 정보 교환을 위한 통신, 사용자 인터페이스 등 간접적으로 제어에 관련된 요소들이 복합적으로 존재한다. PID 제어와 같이 하는 수학적 논리를 바탕으로 한 제어와 전문 관리자의 지식을 기반으로 한 비선형 학습 모델에 의한 제어 등이 공존할 수 있다. 이러한 다양한 요소들을 복합적으로 연동시키기 위해선 기존의 시퀀스 기반 제어 방식에는 한계가 있을 수 있다. 관행의 방식과 같이 시계열 상에서 획득한 충분한 데이터를 이용하여 제어의 양과 시점을 결정하는 방식은 예외 상황에 충분히 대처하기 어려운 단점이 있을 수 있다. 이러한 예외 상황은 자연적인 조건의 변화에 따라 불가피하게 발생하는 경우와 시스템의 오류에 기인하는 경우로 나뉠 수 있다. 본 연구에서는 실시간으로 변하는 시설환경 내의 다양한 환경요소를 실시간으로 분석하고 상응하는 제어를 수행하여 수학적이며 예측 가능한 논리에 의해 준비된 제어시스템을 보완할 방법을 연구하였다. 과거의 고성능 컴퓨팅(HPC; High Performance Computing)은 다수의 컴퓨터를 고속 네트워크로 연동하여 집적적으로 연산능력을 향상시킨 기술로 비용과 규모의 측면에서 많은 투자를 필요로 하는 첨단 고급 기술이었다. 핸드폰과 모바일 장비의 발달로 인해 소형 마이크로프로세서가 발달하여 근래 2 Ghz의 클럭 속도에 이르는 어플리케이션 프로세서(AP: Application Processor)가 등장하기도 하였다. 상대적으로 낮은 성능에도 불구하고 저전력 소모와 플랫폼의 소형화를 장점으로 한 AP를 시설환경의 실시간 제어에 응용하기 위한 방안을 연구하였다. CPU의 클럭, 메모리의 양, 코어의 수량을 다음과 같이 달리한 3가지 시스템을 비교하여 AP를 이용한 마이크로 클러스터링 기술의 성능을 비교하였다.1) 1.5 Ghz, 8 Processors, 32 Cores, 1GByte/Processor, 32Bit Linux(ARMv71). 2) 2.0 Ghz, 4 Processors, 32 Cores, 2GByte/Processor, 32Bit Linux(ARMv71). 3) 1.5 Ghz, 8 Processors, 32 Cores, 2GByte/Processor, 64Bit Linux(Arch64). 병렬 컴퓨팅을 위한 개발 라이브러리로 MPICH(www.mpich.org)와 Open-MP(www.openmp.org)를 이용하였다. 2,500,000,000에 이르는 정수 중 소수를 구하는 연산에 소요된 시간은 1)17초, 2)13초, 3)3초 이었으며, $12800{\times}12800$ 크기의 행렬에 대한 2차원 FFT 연산 소요시간은 각각 1)10초, 2)8초, 3)2초 이었다. 3번 경우는 클럭속도가 3Gh에 이르는 상용 데스크탑의 연산 속도보다 빠르다고 평가할 수 있다. 라이브러리의 따른 결과는 근사적으로 동일하였다. 선행 연구에서 획득한 3차원 계측 데이터를 1초 단위로 3차원 선형 보간법을 수행한 경우 코어의 수를 4개 이하로 한 경우 근소한 차이로 동일한 결과를 보였으나, 코어의 수를 8개 이상으로 한 경우 앞선 결과와 유사한 경향을 보였다. 현장 보급 가능성, 구축비용 및 전력 소모 등을 종합적으로 고려한 AP 활용 마이크로 클러스터링 기술을 지속적으로 연구할 것이다.

  • PDF

A case study on the mathematical problem solving performance of simultaneous equations for the students from a remedial course (특별보충과정 학생들의 문제해결수행에 대한 사례연구)

  • Ko, Sang-Sook;Lee, Sang-Hui
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.1
    • /
    • pp.105-120
    • /
    • 2006
  • The Seventh Curriculum makes sure that those students who don't have a proper understanding of contents required at a certain stage take a remedial course. But a trend contrary to the intention is formed since there is no systematic education for such a course and thus more students get to fall into the group of low achievement. In particular, solving a simultaneous equation in a rote way without understanding influences negatively students' achievement. Schoenfeld introduced the basic elements of one's own mathematical problem solving process and behavior, referred to Polya's. Employing Schoenfeld's strategy, this study aimed to induce students' active participation in math classes, as well as to focus on a mathematical problem solving process during the study. Two students were selected from a remedial course at 00 Middle School and administered with a qualitative case study method over 17 lessons, each of which lasted for 30 minutes. In the beginning, they used such knowledge as facts and definitions a lot. There was a tendency of their resorting to intuitive knowledge more when they lacked basic knowledge or met with a difficult question. As the lessons were given, however, they improved their ability to implement algorithm procedures and used more familiar ones with the developed common procedures in the area of resources.

  • PDF

Identifying Key Competencies Required for STEM Occupations (과학, 기술, 공학, 수학(STEM) 직종에 요구되는 핵심 역량 분석)

  • Jang, Hyewon
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.781-792
    • /
    • 2018
  • In modern society, as technology develops and industry diversifies, students can choose from a variety of career paths. Since science, technology, engineering, and mathematics require a longer education and experience than other fields, it is important to design science education policies based on the competencies required for science, technology, engineering, and mathematics (STEM) occupations. This study explores the definition of science and technology manpower and STEM occupations and identifies core competencies of STEM occupations using standard job information operated and maintained by the US Department of Labor ($O^*NET$). We specially analyzed ratings of the importance of skills (35 ratings), knowledge (33 ratings), and work activities (41 ratings) conducting descriptive analysis and principal component analysis (PCA). As a result, core competencies of STEM occupations consist of STEM problem-solving competency, Management competency, Technical competency, Social service competency, Teaching competency, Design competency, Bio-chemistry competency, and Public service competency, which accounts for 70% of the total variance. This study can be a reference for setting the curriculum and educational goals in secondary and college education by showing the diversity of science and technology occupations and the competencies required for STEM occupations.

The Development and Application of Activity-Centered STEM Education Program of Electricity, Electronics Technology area in Middle School (중학교 전기전자기술 영역의 활동 중심 STEM 교육프로그램 개발 및 적용)

  • Bae, Seon-A
    • 대한공업교육학회지
    • /
    • v.36 no.1
    • /
    • pp.1-22
    • /
    • 2011
  • The purpose of this study was to develop and apply activity-centered STEM education program of electricity and electronics technology are in middle schools. The program was developed on the emphasis of problem solving in real world in relation to knowledge, attitude, and skill of Science, Technology, Engineering, and Mathematics. Basically the activity-centered STEM education program was developed through three steps of preparation, development and improvement. In the preparation stage the fellowing was included: (1) need analysis of student, educator, society (2) selection of integration type (3) analyzing subject matter of electricity, electronics area (4) establishing criteria for selecting activity tasks. In the development stage the fellowing was conducted: (1) selection of activity tasks (2) setting up educational goals (3) analyzing activity and clarifing the detailed activity (4) selecting program content, (5) organization of instructional content (6) statement of instructional objectives (7) structuring STEM education program In the improvement stage the fellowing was consisted of: (1) verification of validity by experts (2) execution of pilot test and field test by students and correction of program. The results of the applied the Activity-Based STEM Education Program to 'Afterschool' activities of S middle school were as follow: First, student' satisfaction level was high. Second, student' achievement in the cognitive domain, and affective domain was positive change. Third, student' problem solving ability was positive effect.

Study of investigation the present states of operating teaching and learning methode in relation to vocation inquiry section (직업탐구 영역 관련 교과의 교수·학습 방법 운용 실태 조사 연구)

  • Lee, Yong-Soon;Lee, Byung-Wook;Bae, Dong-Yoon
    • 대한공업교육학회지
    • /
    • v.30 no.2
    • /
    • pp.23-32
    • /
    • 2005
  • The purpose of this study is to investigate and analyze the actual state of teaching and learning methods which are applied to the vocation inquiry section-related subjects of the College Scholastic Ability Test(CSAT) by the teachers who teach specialized subjects of vocational high schools. In order for us to get the background and feature of establishment in the area of vocation inquiry section of the CSAT, previous studies and literature was analyzed and sample survey on the 600 teachers who teach the vocation inquiry section-related subjects was made. The result of this survey is as shown below; First, the teachers who are in charge of vocation inquiry section-related subjects understand that theory and practice is in the ratio 60.76:39.24 and ratio of theory is higher than that of practice. Second, teaching and learning method which is the most relevant to the vocation inquiry section is in the order of lecture(83.9%), experiment & practice(50.4%), computerized learning(41.1%). Third, teaching and learning method which is the most used by the teachers who are in charge of vocation inquiry section-related subjects is in the order of lecture(85.8%), computerized learning(50.1%), experiment and practice(44.4%). Forth, the most desirable teaching and learning method which the teachers who are in charge of vocation inquiry section for this subject believe is in the order of lecture(62.7%) experience & practice(47.7%), computerized learning(44.4%). In light of this result, even though there were not so much difference among the teaching-learning methods which are the most consistent with the contents of the subject in relation to the vocation inquiry section, the most used teaching-learning method by the teachers who teach vocation inquiry section-related subjects and the most desirable teaching-learning method which the teachers who are in charge of vocation inquiry section believe, the most used teaching-learning method by the teachers who are in charge of the vocation inquiry section is lecture. Therefore, it is necessary for us to reinforce the contents in relation to the practice & experiment so that the experience and application can be accumulated and improved through practice which is the specialty of the course of the study in the vocational high school and various teaching and learning method should be developed in consideration of contents of the subject, capability & quality of the learners and status of a classroom.

An Analysis of the Characteristics of Teachers' Adaptive Practices in Science Classes (과학 수업에서 교사의 적응적 실행의 특징 분석)

  • Heekyong Kim;Bongwoo Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.4
    • /
    • pp.403-414
    • /
    • 2023
  • In this study, we examined the adaptive practices of science teachers in their classrooms and their perspectives on the distinguishing features of these practices within science subjects. Our analysis comprised 339 cases from 128 middle and high school science teachers nationwide, and 199 cases on the characteristics of adaptive practices in science disciplines. The primary findings were as follows: First, the most significant characteristic of adaptive practice in science disciplines pertained to experimental procedures. Within the 'suggestion of additional materials/activities' category, the most frequently cited adaptive practice, teachers incorporated demonstrations to either facilitate student comprehension or enhance motivation. Additionally, 'experimental equipment manipulation or presentation of inquiry skills' emerged as the second most common adaptive practice related to experiments. Notably, over 50% of teacher responses regarding the characteristics of adaptive practices in science pertained to experiment guidance. Second, many adaptive practices involving difficulties experienced by students in learning situations were presented, particularly in areas such as numeracy and literacy. Many cases were related to the basic ability of mathematics used as a tool in science learning and understanding scientific terms in Chinese characters. Third, beyond 'experiment guidance', the characteristic adaptive practices of science subjects were related to 'connections between scientific theory and the real world', 'misconception guidance in science', 'cultivation of scientific thinking', and 'convergence approaches'. Fourth, the cases of adaptive practice presented by the science teachers differed by school level and major; therefore, it is necessary to consider school level or major in future research related to adaptive practice. Fifth, most of the adaptive action items with a small number of cases were adaptive actions executed from a macroscopic perspective, so it is necessary to pay attention to related professionalism. Finally, based on the results of this study, the implications for science education were discussed.

The Correlation Between Sensory Integration Function and Scholar Achievement in the Lower Classes Children (저학령기 아동의 감각통합 기능과 학업성취도간의 상관관계)

  • Shin, Joong-Il;Choi, Yung-Gun;Jang, Woo-Heuk;Kim, Kyeong-Mi
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Objective : The purpose of this study is to provide reference to functional level of sensory integration of in the low-grads school age, based on the Clinical Observation of Motor and Postural Skills (COMPS) and to examine correlation between the function of sensory integration and academic achievement. Method : Two schools ("J" and "S") have been selected indiscriminately among 56 elementary schools located in Gimhae-si, GyeongNam and then one class from each school was voluntarily chosen among all second-grade classes of the schools. The total number of students in those two classes was 69 (34 boys and 35 girls). Subjects had no developmental problem and no history of referral regarding neurological conditions. Three skilled researchers administrated the COMPS together, and each researcher executed two sub-items of the COMPS. As result of the academic achievement, score data of midterm- and final-exam in the spring semester were collected. The scores of 'Korean language' and 'Math', common examination subjects in both schools, were utilized for data analysis in this study. Results : Statically, there was no significant correlation between the COMPS Weighted Scores and any academic achievements. In a dispersion graphic analysis, however, the total achievement showed significant negative-correlation with the area of 'Rapid Forearm Rotation' and significant positive-correlation with the area of 'Supine Flexion'. In terms of the Math achievement, there are significant negative-correlation with rapid forearm rotation and asymmetrical tonic neck reflex, and significant positive-correlation with the area of 'Supine Flexion'. Students with higher score of the Korean language showed a tendency to get higher Weighted Score and Minus Adjustment Score, and those with lower score of the Math showed a tendency to get higher COMPS scores in all area except the area of 'Supine Flexion'. There was a statically significant difference in the COMPS scores depend on the age among general characteristics. As student older, all COMPS scores, except those in the area of 'Slow Motion' and 'Supine Flexion, were higher. Conclusions : There is somehow reliable correlation between sensory integration function and academic achievement although no statistical significance found in this study. The information from this study may contribute to initiate developing a normative-reference to screen earlier and more alertly sensory integration dysfunctions for school-age children. Further study is recommended trying to find out more reliable matter regarding low grade- schooler's academic achievement.

  • PDF

An analysis of current condition of student's selection process in Hansung science highschool (한성과학고등학교 학생 선발과정의 현황 분석)

  • Dong, Hyo-Kwan;Jhun, Young-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.13 no.4
    • /
    • pp.65-94
    • /
    • 2003
  • The purpose of this study is to acquire the information on the current situation of students' selection process in order to renovate the system of picking up the students. As a first step of the study, we examined the validity of the factors of the single-out system such as qualification and the process for the application and the standards and proceeding of the selection. Then we analysed the result of the entrance examination of Hansung Science Highschool in 2002. The analysis was on the correlation between the result of entrance examination and the achievement in the school and the decision of the course after graduation. To know on the achievement of the students, we investigated the records of regular tests and asked the teachers' opinion in math and science classes. As a result, we gained the following points: First, the present single-out system has a danger of excluding students who are much talented in science and math field because it is based on students' achievements in middle schools; Second, the new selection system should consider the character and attitude of the applicants in addition to their knowledge; Third, the continuous observation of the teacher in middle school should be an important factor of the picking up system; Fourth, more questions requiring divergent thinking ability and inquiry skill should be developed as selective examination question. Also examination questions should cover the various contents from mathematics to science, and do not affect pre-learning; Finally, the system of present letting all students stand in one line should be changed into that of letting students in various lines. We can consider using multi-step selection system.

Review on Artificial Intelligence Education for K-12 Students and Teachers (K-12 학생 및 교사를 위한 인공지능 교육에 대한 고찰)

  • Kim, Soohwan;Kim, Seonghun;Lee, Minjeong;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • The purpose of this study is to propose the direction of AI education in K-12 education through investigating and analyzing aspects of the purpose, content, and methods of AI education as the curriculum and teacher training factors. We collected and analyzed 9 papers as the primary literature and 11 domestic and foreign policy reports as the secondary literature. The collected literatures were analyzed by applying a descriptive reviews, and the implications were derived by analyzing the curriculum components and TPACK elements for multi-dimensional analysis. As a result of this study, AI education targets were divided into three steps: AI users, utilizer, and developers. In K-12 education, the user and utilizer stages are appropriate, and artificial intelligence literacy must be included for user education. Based on the current computing thinking ability and coding ability for utilizer education, the implication was derived that it is necessary to target the ability to create creative output by applying the functions of artificial intelligence. In addition to the pedagogical knowledge and the ability to use the platform, The teacher training is necessary because teachers need content knowledge such as problem-solving, reasoning, learning, perception, and some applied mathematics, cognitive / psychological / ethical of AI.