• Title/Summary/Keyword: 수학 평가틀

Search Result 57, Processing Time 0.02 seconds

Analysis of the Verbs in the 2009 Revised National Science Curriculum-from the Viewpoint of Cognitive Domain of TIMSS Assessment Framework (2009 개정 과학과 교육과정의 성취기준에 사용된 서술어 분석 -TIMSS 인지적 영역 평가틀을 중심으로-)

  • Song, Eun-Jeong;Je, Min-Kyeong;Cha, Kyung-Mi;Yoo, June-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.607-616
    • /
    • 2016
  • In the 2009 revised science curriculum, comprehensive verbs such as 'know (38%)' and 'understand (46%)' are used in more than 80% of the achievement standard. Many readers, such as teachers, textbook makers, etc. have difficulties in interpreting the meaning of achievement standard sentences with these comprehensive verbs. On the other hand, 'Trends in International Mathematics and Science Study (TIMSS)' uses more various and specific verbs to express the cognitive domain. In this study, we analyzed the 2009 revised science curriculum achievement standard focusing on the TIMSS cognitive domain assessment framework. We divided achievement standard to 228 sentences and three teachers analyzed the meaning of verbs in achievement standard. There were two main results of this study. First, the verb 'Know' was analyzed into different kinds of meanings, such as 'Describe (27%)', 'Recall/Recognize (25%)' and 'Relate (17%)', etc; and the verb 'Understand' was analyzed into 'Explain (37%)', 'Relate (27%)' and 'Describe (21%)', etc. Second, there appeared to have a disagreement among the three analysts during the process of interpreting the achievement standards when the level and scope of the contents of each grade is not clear. This study concludes that there's a need for continuous discussion on the use of verbs in achievement standard to promote clearer expressions for better understanding.

Effects of STEAM-based Mathematics Instruction on Elementary School Students' STEAM Attitudes (STEAM 기반 수학 수업이 초등학생의 융합적 태도에 미치는 효과)

  • Lee, Jong-hak
    • Journal of the Korean School Mathematics Society
    • /
    • v.20 no.4
    • /
    • pp.345-368
    • /
    • 2017
  • The purpose of this study is to investigate the educational significance of STEAM in school mathematics education by developing a STEAM program that learns mathematical and scientific principles based on patterns and analyzing the effects of developed program. For this purpose, we conducted an experimental class based on the STEAM program developed. STEAM attitude and satisfaction were tested for 120 elementary school students. The results of this study are as follows. First, in terms of STEAM attitude, STEAM-based experimental instruction did not differ significantly in the second grade students. However, there were positive effects in the other five grades. Second, in terms of satisfaction, the proportion of students who were 'generally' was 89%. the proportion of students who were 'not generally' was 3%. Study subject students were found to be generally satisfied with the STEAM-based instruction.

  • PDF

Types of Mathematical Thinking that Appeared in Challenge Math in the 5th and 6th Grade Math Teacher's Guidebooks (5, 6학년 수학 교사용 지도서의 도전 수학에 나타난 수학적 사고의 유형)

  • Yim, Youngbin
    • Education of Primary School Mathematics
    • /
    • v.25 no.2
    • /
    • pp.143-160
    • /
    • 2022
  • This study was conducted to discuss educational implications by analyzing the types of mathematical thinking that appeared in challenge math in 5th and 6th grade math teacher's guidebooks. To this end, mathematical thinking types that can be evaluated and nurtured based on teaching and learning contents were organized, a framework for analyzing mathematical thinking was devised, and mathematical thinking appearing in Challenge Math in the 5th and 6th grade math teachers' guidebooks was analyzed. As a result of the analysis, first, 'challenge mathematics' in the 5th and 6th grades of elementary school in Korea consists of various problems that can guide various mathematical thinking at the stage of planning and implementation. However, it is feared that only the intended mathematical thinking will be expressed due to detailed auxiliary questions, and it is unclear whether it can cause mathematical thinking on its own. Second, it is difficult to induce various mathematical thinking at that stage because the questionnaire of the teacher's guidebooks understanding stage and the questionnaire of the reflection stage are presented very typically. Third, the teacher's guidebooks lacks an explicit explanation of mathematical thinking, and it will be necessary to supplement the explicit explanation of mathematical thinking in the future teacher's guidebooks.

Assessment Study on Educational Programs for the Gifted Students in Mathematics (영재학급에서의 수학영재프로그램 평가에 관한 연구)

  • Kim, Jung-Hyun;Whang, Woo-Hyung
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.235-257
    • /
    • 2010
  • Contemporary belief is that the creative talented can create new knowledge and lead national development, so lots of countries in the world have interest in Gifted Education. As we well know, U.S.A., England, Russia, Germany, Australia, Israel, and Singapore enforce related laws in Gifted Education to offer Gifted Classes, and our government has also created an Improvement Act in January, 2000 and Enforcement Ordinance for Gifted Improvement Act was also announced in April, 2002. Through this initiation Gifted Education can be possible. Enforcement Ordinance was revised in October, 2008. The main purpose of this revision was to expand the opportunity of Gifted Education to students with special education needs. One of these programs is, the opportunity of Gifted Education to be offered to lots of the Gifted by establishing Special Classes at each school. Also, it is important that the quality of Gifted Education should be combined with the expansion of opportunity for the Gifted. Social opinion is that it will be reckless only to expand the opportunity for the Gifted Education, therefore, assessment on the Teaching and Learning Program for the Gifted is indispensible. In this study, 3 middle schools were selected for the Teaching and Learning Programs in mathematics. Each 1st Grade was reviewed and analyzed through comparative tables between Regular and Gifted Education Programs. Also reviewed was the content of what should be taught, and programs were evaluated on assessment standards which were revised and modified from the present teaching and learning programs in mathematics. Below, research issues were set up to assess the formation of content areas and appropriateness for Teaching and Learning Programs for the Gifted in mathematics. A. Is the formation of special class content areas complying with the 7th national curriculum? 1. Which content areas of regular curriculum is applied in this program? 2. Among Enrichment and Selection in Curriculum for the Gifted, which one is applied in this programs? 3. Are the content areas organized and performed properly? B. Are the Programs for the Gifted appropriate? 1. Are the Educational goals of the Programs aligned with that of Gifted Education in mathematics? 2. Does the content of each program reflect characteristics of mathematical Gifted students and express their mathematical talents? 3. Are Teaching and Learning models and methods diverse enough to express their talents? 4. Can the assessment on each program reflect the Learning goals and content, and enhance Gifted students' thinking ability? The conclusions are as follows: First, the best contents to be taught to the mathematical Gifted were found to be the Numeration, Arithmetic, Geometry, Measurement, Probability, Statistics, Letter and Expression. Also, Enrichment area and Selection area within the curriculum for the Gifted were offered in many ways so that their Giftedness could be fully enhanced. Second, the educational goals of Teaching and Learning Programs for the mathematical Gifted students were in accordance with the directions of mathematical education and philosophy. Also, it reflected that their research ability was successful in reaching the educational goals of improving creativity, thinking ability, problem-solving ability, all of which are required in the set curriculum. In order to accomplish the goals, visualization, symbolization, phasing and exploring strategies were used effectively. Many different of lecturing types, cooperative learning, discovery learning were applied to accomplish the Teaching and Learning model goals. For Teaching and Learning activities, various strategies and models were used to express the students' talents. These activities included experiments, exploration, application, estimation, guess, discussion (conjecture and refutation) reconsideration and so on. There were no mention to the students about evaluation and paper exams. While the program activities were being performed, educational goals and assessment methods were reflected, that is, products, performance assessment, and portfolio were mainly used rather than just paper assessment.

Analysis on cognitive variables affecting proportion problem solving ability with different level of structuredness (비례 문제 해결에 영향을 주는 인지적 변인 분석)

  • Sung, Chang-Geun;Lee, Kwang-Ho
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.3
    • /
    • pp.331-352
    • /
    • 2012
  • The purpose of the study is to verify what cognitive variables have significant effect on proportional problem solving. For this aim, the study classified proportional problem into well-structured, moderately-structured, ill-structured problem by the level of structuredness, then classified the cognitive variables as well into factual algorithm knowledge, conceptual knowledge, knowledge of problem type, quantity change recognition and meta-cognition(meta-regulation and meta-knowledge). Then, it verified what cognitive variables have significant effects on 6th graders' proportional problem solving abilities through multiple regression analysis technique. As a result of the analysis, different cognitive variables effect on solving proportional problem classified by the level of structuredness. Through the results, the study suggest how to teach and assess proportional reasoning and problem solving in elementary mathematics class.

  • PDF

A Study on the Algebraic Thinking of Mathematically Gifted Elementary Students (초등 수학영재의 대수적 사고 특성에 관한 분석)

  • Kim, Min-Jung;Lee, Kyung-Hwa;Song, Sang-Hun
    • School Mathematics
    • /
    • v.10 no.1
    • /
    • pp.23-42
    • /
    • 2008
  • The purpose of this study was to describe characteristics of thinking in elementary gifted students' solutions to algebraic tasks. Especially, this paper was focused on the students' strategies to develop generalization while problem solving, the justifications on the generalization and metacognitive thinking emerged in stildents' problem solving process. To find these issues, a case study was conducted. The subjects of this study were four 6th graders in elementary school-they were all receiving education for the gifted in an academy for the gifted attached to a university. Major findings of this study are as follows: First, during the process of the task solving, the students varied in their use of generalization strategies and utilized more than one generalization strategy, and the students also moved from one strategy toward other strategies, trying to reach generalization. In addition, there are some differences of appling the same type of strategy between students. In a case of reaching a generalization, students were asked to justify their generalization. Students' justification types were different in level. However, there were some potential abilities that lead to higher level although students' justification level was in empirical step. Second, the students utilized their various knowledges to solve the challengeable and difficult tasks. Some knowledges helped students, on the contrary some knowledges made students struggled. Specially, metacognitive knowledges of task were noticeably. Metacognitive skills; 'monitoring', 'evaluating', 'control' were emerged at any time. These metacognitive skills played a key role in their task solving process, led to students justify their generalization, made students keep their task solving process by changing and adjusting their strategies.

  • PDF

Pre-Service Elementary School Teachers' Statistical Literacy Related To Statistical Problem Solving (통계적 문제해결 지도를 위한 예비초등교사들의 통계적 소양 조사 연구)

  • Ko, Eun-Sung;Park, Min-Sun
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.443-459
    • /
    • 2017
  • The alternative perspective on statistical literacy which considers statistical literacy as an all-encompassing goal of statistics education has been emphasized these days. From this perspective and the diversity of statistical literacy, the key issues related to each step of statistical problem solving can be regarded as components of statistical literacy. This study aims at investigating the key issues and pre-service elementary school teachers' knowledge of them. Based on previous literatures, a framework that indicated the issues related to each step of statistical problem solving was developed. In addition, based on 26 pre-service elementary school teachers' critical analysis of statistics posters, their understanding of each issue was investigated.

An Analysis of an Elementary Math Class Program for Gifted Students and Its Current Status (초등수학 영재학급의 운영 실태 및 프로그램 분석)

  • Kim, Sang Mi;Choi, Chang Woo
    • Education of Primary School Mathematics
    • /
    • v.20 no.1
    • /
    • pp.37-52
    • /
    • 2017
  • The purpose of this thesis is to analyze the current status of a program for an elementary math class for gifted students in Daegu and to propose a remedy. The main results of this thesis are as follows. First, goals of the gifted class and the basic operation direction were satisfactory, however plans for parent training programs and self evaluation of the classes were not presented. Therefore, it needs when and how to do for specific plan of gifted class evaluation and parent training programs. Second, The annual instruction plan has been restricted to the subject matter education and field trips and has not included specific teaching methods in accordance with the contents of learning program. The management of gifted classes, therefore, requires not only the subject matter education and field trips but also output presentations, leadership programs, voluntary activities, events and camps which promote the integral development of gifted students. Third, there is no duplication of content to another grade, and various activities did not cover the whole scope of math topics(eg. number and operation, geometry, measurement, pattern) equally. In accordance with elementary mathematics characteristics, teachers should equally distribute time in whole range of mathematics while they teach students in the class because it is critical to discover gifted students throughout the whole curriculum of elementary mathematics. Fourth, as there are insufficient support and operational lack of material development, several types of programs are not utilized and balanced. It is necessary for teachers to try to find the type of teaching methods in accordance with the circumstances and content, so that students can experience several types of programs. If through this study, we can improve the development, management and quality of gifted math programs, it would further the development of gifted education.

An Analysis of Problems of Mathematics Textbooks in regards of the Types of Abductions to be used to solve (교과서 문제해결에 포함된 가추의 유형 - 중학교 2학년과 3학년 수학 교과서를 중심으로-)

  • Lee, Youngha;Jung, Kahng Min
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.3
    • /
    • pp.335-351
    • /
    • 2013
  • This research assumes that abduction is so important as much as all the creative plausible reasoning to be based upon. We expect it to be deeply appreciated and be taught positively in school mathematics. We are noticing that every problem solving process must contain some steps of abduction and thus, we believe that those who are afraid of abduction cannot solve any newly faced problem. Upon these thoughts, we are looking into the middle school mathematics textbooks to see that how strongly various abductions are emphasized to solve problems in it. We modified types of abduction those were suggested by Eco(1983) or by Bettina Pedemonte, David Reid (2011) and investigated those books to see if, we may regard, various types of abduction be intended to be used to solve their problems. As a result of it, we found that more than 92% of the problems were not supposed to use creative abduction necessarily to solve it. And we interpret this as most authors of the textbooks have emphasis more on the capturing and understanding of basic knowledge of school mathematics rather than the creative reasoning through them. And we believe this need innovation, otherwise strong debates are necessary among the professionals of it.

  • PDF

A Comparing Study of Two Constructivisms on L.E.M. (배중률을 둘러싼 구성주의의 두 입장 비교)

  • Oh, Chae-Hwan;Kang, Ok-Ki;Ree, Sang-Wook
    • Journal for History of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.45-59
    • /
    • 2011
  • Constructionists believe that mathematical knowledge is obtained by a series of purely mental constructions, with all mathematical objects existing only in the mind of the mathematician. But constructivism runs the risk of rejecting the classical laws of logic, especially the principle of bivalence and L. E. M.(Law of the Excluded Middle). This philosophy of mathematics also does not take into account the external world, and when it is taken to extremes it can mean that there is no possibility of communication from one mind to another. Two constructionists, Brouwer and Dummett, are common in rejecting the L. E. M. as a basic law of logic. As indicated by Dummett, those who first realized that rejecting realism entailed rejecting classical logic were the intuitionists of the school of Brouwer. However for Dummett, the debate between realists and antirealists is in fact a debate about semantics - about how language gets its meaning. This difference of initial viewpoints between the two constructionists makes Brouwer the intuitionist and Dummettthe the semantic anti-realist. This paper is confined to show that Dummett's proposal in favor of intuitionism differs from that of Brouwer. Brouwer's intuitionism maintained that the meaning of a mathematical sentence is essentially private and incommunicable. In contrast, Dummett's semantic anti-realism argument stresses the public and communicable character of the meaning of mathematical sentences.