• Title/Summary/Keyword: 수학적 오류 분류

Search Result 16, Processing Time 0.027 seconds

Cognitive Psychological Approaches for Classification of Students' Mathematical Errors on the basis of Experiential Structuralism (경험적 구조주의에 의한 수학적 오류의 분류가능성 탐색)

  • Kim, Bu-Mi
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.4
    • /
    • pp.461-488
    • /
    • 2005
  • This article presents new perspectives for classification of students' mathematical errors on the basis of experiential structuralism. Experiential structuralism's mechanism gives us new insights on mathematical errors. The hard core of mechanism is consist of 6 autonomous capacity spheres that are responsible for the representation and processing of different reality domains. There are specific forces that are responsible for this organization of mind. There are expressed in terms of a set of five organizational principles. Classification of mathematical errors is ascribed by the theory to the interaction between the 6 autonomous capacity spheres. Different types of classification require different autonomous capacity spheres. We can classify mathematical errors in the domain of linear function problem solving comparing cognitive psychological mechanism of experiential structuralism.

  • PDF

테크놀로지를 활용한 교수학적 환경에서 대수적 연산 오류 지도에 관한 연구

  • Park, Yong-Beom;Tak, Dong-Ho
    • Communications of Mathematical Education
    • /
    • v.18 no.1 s.18
    • /
    • pp.223-237
    • /
    • 2004
  • 본 연구는 중학교 1학년을 대상으로 일차방정식의 풀이 과정에서 나타나는 오류를 분석하고 그래핑 계산기를 활용하여 오류의 교정 과정을 제시하였다. 오류의 유형을 개념적 이해 미흡 오류, 등식의 성질에 대한 오류, 이항에 대한 오류, 계산 착오로 인한 오류, 기호화에 의한 오류로 분류하였으며, 이 중에서 등식의 성질에 대한 오류와 개념적 이해 미흡으로 인한 오류를 많이 범하고 있었다. 학생들이 TI-92를 활용하여 일차방정식의 해를 구할 때, Home Mode에서 Solve 기능을 이용하여 단순히 결과만을 보는 것 보다 Symbolic Math Guide를 이용하여 풀이 과정을 선택하여 대수적 알고리즘을 형성하면서 해를 구하는 것을 선호하였다. 그리고 학생들의 정의적 및 기능적 측면을 고려해야 할 필요성을 느끼게 되었다.

  • PDF

An analysis of errors in problem solving of the function unit in the first grade highschool (고등학교 1학년 함수단원 문제해결에서의 오류에 대한 분석)

  • Mun, Hye-Young;Kim, Yung-Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.3
    • /
    • pp.277-293
    • /
    • 2011
  • The purpose of mathematics education is to develop the ability of transforming various problems in general situations into mathematics problems and then solving the problem mathematically. Various teaching-learning methods for improving the ability of the mathematics problem-solving can be tried. However, it is necessary to choose an appropriate teaching-learning method after figuring out students' level of understanding the mathematics learning or their problem-solving strategies. The error analysis is helpful for mathematics learning by providing teachers more efficient teaching strategies and by letting students know the cause of failure and then find a correct way. The following subjects were set up and analyzed. First, the error classification pattern was set up. Second, the errors in the solving process of the function problems were analyzed according to the error classification pattern. For this study, the survey was conducted to 90 first grade students of ${\bigcirc}{\bigcirc}$high school in Chung-nam. They were asked to solve 8 problems in the function part. The following error classification patterns were set up by referring to the preceding studies about the error and the error patterns shown in the survey. (1)Misused Data, (2)Misinterpreted Language, (3)Logically Invalid Inference, (4)Distorted Theorem or Definition, (5)Unverified Solution, (6)Technical Errors, (7)Discontinuance of solving process The results of the analysis of errors due to the above error classification pattern were given below First, students don't understand the concept of the function completely. Even if they do, they lack in the application ability. Second, students make many mistakes when they interpret the mathematics problem into different types of languages such as equations, signals, graphs, and figures. Third, students misuse or ignore the data given in the problem. Fourth, students often give up or never try the solving process. The research on the error analysis should be done further because it provides the useful information for the teaching-learning process.

  • PDF

Error analysis related to a learner's geometrical concept image in mathematical problem solving (학생이 지닌 기하적 심상과 문제해결과정에서의 오류)

  • Do, Jong-Hoon
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.2
    • /
    • pp.195-208
    • /
    • 2006
  • Among different geometrical representations of a mathematical concept, learners are likely to form their geometrical concept image of the given concept based on a specific one. A learner's image is not always in accord with the definition of a concept. This can induce his or her errors in mathematical problem solving. We need to analyse types of such errors and the cause of the errors. In this study, we analyse learners' geometrical concept images for geometrical concepts and errors related to such images. Furthermore we propose a theoretical framework for error analysis related to a learner's concept image for a general mathematical concept in mathematical problem solving.

  • PDF

An Analysis on Error Types of Graphs for Statistical Literacy Education: Ethical Problems at Data Analysis in the Statistical Problem Solving (통계적 소양 교육을 위한 그래프 오류 유형 분석: 자료 분석 단계에서의 통계 윤리 문제)

  • Tak, Byungjoo;Kim, Dabin
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.24 no.1
    • /
    • pp.1-30
    • /
    • 2020
  • This study was carried out in order to identify the error types of statistical graphs for statistical literacy education. We analyze the meaning of using graphs in statistical problem solving, and identify categories, frequencies, and contexts as the components of statistical graphs. Error types of representing categories and frequencies make statistics consumers see incorrect distributions of data by subjective point of view of statistics producers and visual illusion. Error types of providing contexts hinder the interpretation of statistical information by concealing or twisting the contexts of data. Moreover, the findings show that tasks provide standardized frame already for drawing graphs in order to avoid errors and pay attention to the process of drawing the graph rather than statistical literacy for analyzing data. We suggest some implications about statistical literacy education, ethical problems, and knowledge for teaching to be considered when teaching the statistical graph in elementary mathematics classes.

The analysis of mathematics error type that appears from the process of solving problem related to real life (실생활 문장제의 해결과정에 나타나는 오류유형 분석)

  • Park, Jang Hee;Ryu, Shi Kyu;Lee, Joong Kwoen
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.4
    • /
    • pp.699-718
    • /
    • 2012
  • The purpose of mathematics eduction is to develop the ability of thinking mathematically. It informs method to solve problem through mathematical thinking that teach mathematical ability. Errors in the problem solving can be thought as those in the mathematical thinking. Therefore analysis and classification of mathematics errors is important to teach mathematics. This study researches the preceding studies on mathematics errors and presents the characteristic of them with analyzed models. The results achieved by analysis of the process of problem solving are as follows : ▸ Students feel much harder to solve words problems rather than multiple-choice problems. ▸ The length of sentence make some differences of understanding of the words problems. Students easy to understand short sentence problems than long sentence problems. ▸ If students feel difficulties on the pre-learned mathematical content, they feel the same difficulties on the words problems based on the pre-learned mathematics content.

  • PDF

Effective Teaching Method for Errors Patterns in Numbers and Operations of Elementary Mathematics (수와 연산영역의 오류유형에 따른 효과적인 지도 방안)

  • Jang, Su-Yeon;Ahn, Byoung-Gon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.355-376
    • /
    • 2010
  • This research was about analyzing students' major error types in the field of elementary 1st grade mathematics numbers and operations, and formulating and applying effective teaching methods to find out their effects. Among the errors the students were making, it was found that in the field of numbers there was more than 50% chance of making calculation mistakes in 50 rounds of rational counting. Also, in the field of operations, it was discovered that most of students' mistakes had to do with subtraction. The results from the classification of the 4 types of error showed that most errors were made from having inaccurate concept of knowledge and definition. Thus, it can be concluded that when elementary 1st grade teachers teach students mathematics, it is most important that they put best effort into firmly establishing the students fundamental concept, definition, facts, and functions. For that matter, students were interviewed one by one, and by implementing learning method using some concrete materials as tools, students were able to fix their own errors. More importantly, students were able to gain interest and become more willing to participate by joining in this program, which led to more effective guidance.

  • PDF

Analyzing Mathematical Performances of ChatGPT: Focusing on the Solution of National Assessment of Educational Achievement and the College Scholastic Ability Test (ChatGPT의 수학적 성능 분석: 국가수준 학업성취도 평가 및 대학수학능력시험 수학 문제 풀이를 중심으로)

  • Kwon, Oh Nam;Oh, Se Jun;Yoon, Jungeun;Lee, Kyungwon;Shin, Byoung Chul;Jung, Won
    • Communications of Mathematical Education
    • /
    • v.37 no.2
    • /
    • pp.233-256
    • /
    • 2023
  • This study conducted foundational research to derive ways to use ChatGPT in mathematics education by analyzing ChatGPT's responses to questions from the National Assessment of Educational Achievement (NAEA) and the College Scholastic Ability Test (CSAT). ChatGPT, a generative artificial intelligence model, has gained attention in various fields, and there is a growing demand for its use in education as the number of users rapidly increases. To the best of our knowledge, there are very few reported cases of educational studies utilizing ChatGPT. In this study, we analyzed ChatGPT 3.5 responses to questions from the three-year National Assessment of Educational Achievement and the College Scholastic Ability Test, categorizing them based on the percentage of correct answers, the accuracy of the solution process, and types of errors. The correct answer rates for ChatGPT in the National Assessment of Educational Achievement and the College Scholastic Ability Test questions were 37.1% and 15.97%, respectively. The accuracy of ChatGPT's solution process was calculated as 3.44 for the National Assessment of Educational Achievement and 2.49 for the College Scholastic Ability Test. Errors in solving math problems with ChatGPT were classified into procedural and functional errors. Procedural errors referred to mistakes in connecting expressions to the next step or in calculations, while functional errors were related to how ChatGPT recognized, judged, and outputted text. This analysis suggests that relying solely on the percentage of correct answers should not be the criterion for assessing ChatGPT's mathematical performance, but rather a combination of the accuracy of the solution process and types of errors should be considered.

Analysis of problem posing activity of fifth grade students (초등학교 5학년 학생들의 문제 만들기 활동 분석)

  • Sung, Chang-Geun;Lee, Nam kyung;Lee, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • v.20 no.3
    • /
    • pp.193-204
    • /
    • 2017
  • The purpose of the study was to investigate and develop a practical approach to integrating student-driven mathematical problems posing in mathematics instruction. A problem posing activity was performed during regular mathematics instruction. A total of 540 mathematical problems generated by students were recorded and analysed using systemic procedures and criteria. Of the problems, 81% were mathematically solvable problem and 18% were classified as error type problems. The Mathematically solvable problem were analysed and categorized according to the complexity level; 13% were of a high-level, 30% mid-level and 57% low-level. The error-type problem were classified as such within three categories: non-mathematical problem, statement or mathematically unsolvable problem. The error-type problem category was distributed variously according to the leaning theme and accomplishment level. The study has important implications in that it used systemic procedures and criteria to analyse problem generated by students and provided the way for integrating mathematical instruction and problem posing activity.

The Analysis of Relationship between Error Types of Word Problems and Problem Solving Process in Algebra (대수 문장제의 오류 유형과 문제 해결의 관련성 분석)

  • Kim, Jin-Ho;Kim, Kyung-Mi;Kwean, Hyuk-Jin
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.599-624
    • /
    • 2009
  • The purpose of this study was to investigate the relationship between error types and Polya's problem solving process. For doing this, we selected 106 sophomore students in a middle school and gave them algebra word problem test. With this test, we analyzed the students' error types in solving algebra word problems. First, We analyzed students' errors in solving algebra word problems into the following six error types. The result showed that the rate of student's errors in each type is as follows: "misinterpreted language"(39.7%), "distorted theorem or solution"(38.2%), "technical error"(11.8%), "unverified solution"(7.4%), "misused data"(2.9%) and "logically invalid inference"(0%). Therefore, we found that the most of student's errors occur in "misinterpreted language" and "distorted theorem or solution" types. According to the analysis of the relationship between students' error types and Polya's problem-solving process, we found that students who made errors of "misinterpreted language" and "distorted theorem or solution" types had some problems in the stage of "understanding", "planning" and "looking back". Also those who made errors of "unverified solution" type showed some problems in "planing" and "looking back" steps. Finally, errors of "misused data" and "technical error" types were related in "carrying out" and "looking back" steps, respectively.

  • PDF