• Title/Summary/Keyword: 수학적추론

Search Result 361, Processing Time 0.02 seconds

수학 영재 판별을 위한 수학 창의적 문제해결력 검사 개발

  • Jo Seok-Hui;Hwang Dong-Ju
    • Proceedings of the Korea Society of Mathematical Education Conference
    • /
    • 2006.04a
    • /
    • pp.211-226
    • /
    • 2006
  • 이 연구는 수학 창의적 문제해결력을 바탕으로 수학 영재를 판별하기 위해서 수학 창의적 문제해결력 검사를 개발하고, 유창성만으로 수학 창의성을 평가한 이 검사 방법의 신뢰도와 타당도를 검증하는데 있다. 10개의 개방적인 수학 문제를 개발한 바, 수학적으로는 직관적 통찰력, 정보 조직력, 추론능력, 일반화 및 적용력, 반성적 사고력을 요구하는 문제들이다. 이 10문항을 영재교육기관에 입학하고자 지원한 초등학교 5학년 2,2029명에게 실시했다. 교사들은 각 문제에 대해 타당한 답을 제시한 빈도로 유창성을 측정했다. 학생들의 반응은 Rasch의 1모수 문항반응모형을 기반으로 한 BIGSTEPTS 로 분석했다. 문항반응 분석결과, 이 검사는 창의성을 유창성만으로 측정할 때도 영재판별 검사로서 신뢰도, 타당도, 난이도, 변별도가 모두 양호한 것으로 나타났다. 덜 정의되고, 덜 구조화되고, 신선한 문제가 영재교육 프로그램에 지원한 학생들의 수학 창의성을 측정하는데 좋은 문제임을 확인할 수 있었다. 또한 이 검사는 남학생이 여학생보다 수학 창의적 문제해결력이 우수하며, 영재교육원에 지원한 학생들이 수학영재학급에 지원한 학생들보다 더 우수함을 확인해 주었다.

  • PDF

A Design of Expert System for Reconstruction of Automobile Collision Accidents (자동차 사고 재구성 전문가 시스템의 설계)

  • 김현경
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • 자동차 사고 재구성이란 사고 상황으로부터 가능한 모든 정보를 수집, 분석하여 사고 거동 및 원인을 규명하는 작업을 의미한다. 본 논문에서는 자동차 사고 재구성에 직접 적용이 가능하도록 개발된 범용성의 정성적 충돌 전문가 시스템의 Prototype을 소개한다. 이 시스템은 충돌 전 물체의 운동 방향과 공간에서의 정보가 주어졌을 때, 충돌로 인한 물체의 순간적인 운동을 정성적으로 예측한다. 분야 모델은 정성적 충돌 이론과 정성적 계산을 제공하는 정성적 수학의 지식 베이스로 구성된다. 충돌로 인한 물체의 운동을 해석하는 데 있어, 충돌 전 물체의 운동 방향과 충돌시의 기하학적 배치사이의 상호 작용을 분석하는 것이 그 핵심을 이루고 있다. 본 논문에서는 그 상호 작용을 밝혀 내어 정성적 표현 방식에 의거하여 해석하는 충돌 이론을 소개하였다. 추론 기관을 설계하는데 있어서는 동력학 정보뿐만 아니라 공간 정보를 추론하기 위한 기법이 제시되었다.

  • PDF

An Analysis on Reasoning of 4th-Grade Elementary School Students in Comparing Unlike Fraction Magnitudes (초등학교 4학년 학생들의 이분모 분수 크기 비교에 나타나는 추론 분석)

  • Yoon, Chaerin;Chang, Hyewon
    • Education of Primary School Mathematics
    • /
    • v.26 no.3
    • /
    • pp.181-197
    • /
    • 2023
  • The importance of reasoning processes based on fractional concepts and number senses, rather than a formalized procedural method using common denominators, has been noted in a number of studies in relation to compare the magnitudes of unlike fractions. In this study, a unlike fraction magnitudes comparison test was conducted on fourth-grade elementary school students who did not learn equivalent fractions and common denominators to analyze the reasoning perspectives of the correct and wrong answers for each of the eight problem types. As a result of the analysis, even students before learning equivalent fractions and reduction to common denominators were able to compare the unlike fractions through reasoning based on fractional sense. The perspective chosen by the most students for the comparison of the magnitudes of unlike fractions is the 'part-whole perspective', which shows that reasoning when comparing the magnitudes of fractions depends heavily on the concept of fractions itself. In addition, it was found that students who lack a conceptual understanding of fractions led to difficulties in having quantitative sense of fraction, making it difficult to compare and infer the magnitudes of unlike fractions. Based on the results of the study, some didactical implications were derived for reasoning guidance based on the concept of fractions and the sense of numbers without reduction to common denominators when comparing the magnitudes of unlike fraction.

An educational analysis on ratio concept (비 개념에 대한 교육적 분석)

  • 정은실
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.3
    • /
    • pp.247-265
    • /
    • 2003
  • The purpose of this study is to analyze the essence of ratio concept from educational viewpoint. For this purpose, it was tried to examine contents and organizations of the recent teaching of ratio concept in elementary school text of Korea from ‘Syllabus Period’ to ‘the 7th Curriculum Period’ In these text most ratio problems were numerically and algorithmically approached. So the Wiskobas programme was introduced, in which the focal point was not on mathematics as a closed system but on the activity, on the process of mathematization and the subject ‘ratio’ was assigned an important place. There are some educational implications of this study which needs to be mentioned. First, the programme for developing proportional reasoning should be introduced early Many students have a substantial amount of prior knowledge of proportional reasoning. Second, conventional symbol and algorithmic method should be introduced after students have had the opportunity to go through many experiences in intuitive and conceptual way. Third, context problems and real-life situations should be required both to constitute and to apply ratio concept. While working on contort problems the students can develop proportional reasoning and understanding. Fourth, In order to assist student's learning process of ratio concept, visual models have to recommend to use.

  • PDF

종이접기를 통한 패턴 탐구 활동

  • Yun, Dae-Won;Kim, Dong-Geun
    • Proceedings of the Korea Society of Mathematical Education Conference
    • /
    • 2008.05a
    • /
    • pp.11-15
    • /
    • 2008
  • 다각형에서 가장 기본이 되는 삼각형과 사각형의 종이를 접을 때 마다 다양한 규칙성들이 발견될 수 있다. 따라서 본 연구에서는 이런 종이접기를 통한 패턴 탐구를 통해 문제를 형식화거나 일반화 하는 능력과 수학적으로 사고하는 능력 즉, 귀납적 추론력을 길러주고자 함에 목적을 두고 있다.

  • PDF

5th and 6th Grade Korean Students' Proportional Reasoning Abilities (초등학교 5학년과 6학년의 비례 추론 능력 분석)

  • Chong, Yeong Ok;Jung, Yoo Kyung
    • School Mathematics
    • /
    • v.18 no.4
    • /
    • pp.819-838
    • /
    • 2016
  • This research analyzed proportional reasoning abilities of the 5th grade students who learned only the basis of ratio and rate and 6th grade students who also learned proportion and cross product strategy. Data were collected through the proportional reasoning tests and the interviews, and then the achievement of the students and their proportional reasoning strategies were analyzed. In the light of such analytical results, the conclusions are as follows. Firstly, there is not much difference between 5th and 6th grade students in the achievement scores. Secondly, both 5th and 6th graders are less familiar with the geometric, qualitative and comparisons tasks than the other tasks. Thirdly, not only 5th graders but also 6th graders used informal strategies much more than the formal strategy. Fourthly, some students can't come up with other strategies than the cross product strategy. Finally, many students have difficulties in discerning proportional situation and non-proportional situations. This study provided suggestions for improving teaching proportional reasoning in elementary schools in Korea as follows: focusing on letting students use their informal strategies fluently in geometric, qualitative, and comparisons tasks as well as algebraic, quantitative, and missing value tasks focusing on the concept of ratio and proportion instead of enforcing the formal strategy.

Features of sample concepts in the probability and statistics chapters of Korean mathematics textbooks of grades 1-12 (초.중.고등학교 확률과 통계 단원에 나타난 표본개념에 대한 분석)

  • Lee, Young-Ha;Shin, Sou-Yeong
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.4
    • /
    • pp.327-344
    • /
    • 2011
  • This study is the first step for us toward improving high school students' capability of statistical inferences, such as obtaining and interpreting the confidence interval on the population mean that is currently learned in high school. We suggest 5 underlying concepts of 'discretion of contingency and inevitability', 'discretion of induction and deduction', 'likelihood principle', 'variability of a statistic' and 'statistical model', those are necessary to appreciate statistical inferences as a reliable arguing tools in spite of its occasional erroneous conclusions. We assume those 5 concepts above are to be gradually developing in their school periods and Korean mathematics textbooks of grades 1-12 were analyzed. Followings were found. For the right choice of solving methodology of the given problem, no elementary textbook but a few high school textbooks describe its difference between the contingent circumstance and the inevitable one. Formal definitions of population and sample are not introduced until high school grades, so that the developments of critical thoughts on the reliability of inductive reasoning could not be observed. On the contrary of it, strong emphasis lies on the calculation stuff of the sample data without any inference on the population prospective based upon the sample. Instead of the representative properties of a random sample, more emphasis lies on how to get a random sample. As a result of it, the fact that 'the random variability of the value of a statistic which is calculated from the sample ought to be inherited from the randomness of the sample' could neither be noticed nor be explained as well. No comparative descriptions on the statistical inferences against the mathematical(deductive) reasoning were found. Few explanations on the likelihood principle and its probabilistic applications in accordance with students' cognitive developmental growth were found. It was hard to find the explanation of a random variability of statistics and on the existence of its sampling distribution. It is worthwhile to explain it because, nevertheless obtaining the sampling distribution of a particular statistic, like a sample mean, is a very difficult job, mere noticing its existence may cause a drastic change of understanding in a statistical inference.

  • PDF

An Investigation on $6^{th}$ Grade Students' Spatial Sense and Spatial Reasoning (초등학교 6학년 학생들의 공간감각과 공간추론능력 실태조사)

  • Kim, Yu-Kyung;Pang, Jeong-Suk
    • School Mathematics
    • /
    • v.9 no.3
    • /
    • pp.353-373
    • /
    • 2007
  • The purpose of this study was to provide instructional suggestions by investigating the spatial sense and spatial reasoning ability of 6th grade students. The questionnaire consisted of 20 questions, 10 for spatial visualization and 10 for spatial orientation. The number of subjects for the survey was 145. The processes through which the students solved the problems were the basis for the assessment of their spatial reasoning. The result of the survey is as follows: First, students performed better in spatial visualization than in spatial orientation. With regard to spatial visualization, they were better in transformation than in rotation. With regard to spatial orientation, students performed better in orientation sense and structure cognitive ability than in situational sense. Second, the students that weren't excellent in spatial visualization tended to answer the familiar figures without using mental images. The students who lacked spatial orientation experienced difficulties finding figures observed from the sides. Third, students had high frequency rate on the cognition and use of transformation, the development and application of visualization methods and the use of analysis and synthesis. However they had a lower rate on a systematic approach and deductive reasoning. Further detailed investigation into how students use spatial reasoning, and apply it to actual teaching practice as a device for advancing their geometric thinking is necessary.

  • PDF

Analyzing Students' Works with Quantitative and Qualitative Graphs Using Two Frameworks of Covariational Reasoning (그래프 유형에 따른 두 공변 추론 수준 이론의 적용 및 비교)

  • Park, JongHee;Shin, Jaehong;Lee, Soo Jin;Ma, Minyoung
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.1
    • /
    • pp.23-49
    • /
    • 2017
  • This study examined two current learning models for covariational reasoning(Carlson et al.(2002), Thompson, & Carlson(2017)), applied the models to teaching two $9^{th}$ grade students, and analyzed the results according to the types of graphs(a quantitative graph or qualitative graph). Results showed that the model of Thompson and Carlson(2017) was more useful than that of Carlson et al.(2002) in figuring out the students' levels in their quantitative graphing activities. Applying Carlson et al.(2002)'s model made it possible to classify levels of the students in their qualitative graphs. The results of this study suggest that not only quantitative understanding but also qualitative understanding is important in investigating students' covariational reasoning levels. The model of Thompson and Carlson(2017) reveals more various aspects in exploring students' levels of quantitative understanding, and the model of Carlson et al.(2002) revealing more of qualitative understanding.

GSP를 활용한 도형학습이 수학학업성취도 및 추론 능력에 미치는 영향

  • Kim, Jin-Ho;Kim, In-Kyung
    • East Asian mathematical journal
    • /
    • v.26 no.4
    • /
    • pp.463-485
    • /
    • 2010
  • The purpose of this paper is to investigate if the instruction using GSP to 4th graders for them to explore 'rectangles and making them' have an influence of understanding and retention of the knowledge, generation of the knowledge which is not dealt with during experimental treatment, and if they can reason based on what they have learned about it and about what has not been learned. According to the result from the data gained, learners in the experiment group show that they can retain, generate, reason better than ones in the comparison group.