• 제목/요약/키워드: 수학자

검색결과 157건 처리시간 0.021초

프랑스 왕실 과학원이 18세기 유럽의 중국지도제작에 미친 영향 (Contribution of French Royal Academy of Science on the European Mapping of China in the Eighteenth Century)

  • 정인철
    • 대한지리학회지
    • /
    • 제49권4호
    • /
    • pp.585-600
    • /
    • 2014
  • 이 연구의 목적은 프랑스 왕실 과학원이 18세기의 유럽의 중국지도 제작에 미친 영향을 살펴보는 것이다. 이를 위해 먼저 1685년 루이 14세가 예수회 선교사를 왕실수학자로 임명하여 중국에 파견한 역사적 배경을 살펴보았는데, 세계 지도 제작을 위한 지리좌표 측정이 선교사 파견 원인임을 확인하였다. 둘째, 카시니는 선교사들에게 경도측량법을 전수하였고, 선교사들은 과학원의 통신회원으로 활동하며, 과학원에 탐사결과를 보고하였다. 셋째, 선교사들의 초반 관측 기록은 중국의 전반적인 지도를 수정할 정도로는 충분하지 않았다. 그렇지만 1700년 이후의 지도에서는 프톨레마이오스의 전통에서 벗어나서 베이징의 좌표를 이전에 비해 약 $20^{\circ}$ 정도 서쪽으로 이동시켜 지도상에서 중국의 너비의 폭을 축소하였다. 넷째, 파견된 선교사들이 참여하여 제작한 "황여전람도"는 프랑스로 전달되었으며, 당빌에 의해 "신중국지도첩"으로 제작되었다. 그리고 이 지도는 이후 100년이 넘게 유럽의 중국 표준지도로 사용되었다.

  • PDF

초기 선형대수학의 역사 (Early History of Linear Algebra)

  • 이상구;이재화;함윤미
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제26권4호
    • /
    • pp.351-362
    • /
    • 2012
  • 행렬 및 벡터공간을 다루는 선형대수학은 사회의 복잡한 현상을 선형화 과정을 거쳐 선형연립방정식이라는 단순한 형태의 수학 문제로 바꾼 후 실제로 해결하는 데 결정적으로 기여한다. 이와 같은 이유로 20세기 중반까지 추상적인 고등수학 과목으로만 여겨지던 선형대수학이 현재는 자연-공학-사회계열 분야 학생의 대부분이 배우는 기본 교과목이 되었다. 본 연구에서는 초기 선형대수학의 발전에 기여한 중국, 일본, 그리고 서양의 수학자들에 대하여 다룬다. 선형대수학은 <산수서>, <구장산술>, 세키 고와, 뫼비우스, 그라스만 실베스터, 케일리 등을 거치면서 비선형적으로 발전해왔다. 우리는 새로 발굴한 내용을 중심으로 초기 선형대수학의 발전과정을 소개한다.

<구장산술九章算術>과 남병길의 <구장술해九章術解>의 교육적 활용 방안 (Pedagogical Approach of the Nine Chapters on the Mathematical Art and Nam Byung Gil's GuJangSulHae)

  • 정해남
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제14권2호
    • /
    • pp.103-116
    • /
    • 2011
  • 동아시아 수학사에서 가장 중요하고 기초적인 문헌은 <구장산술九章算術>이다. 이 책은 오랜 세월 동안 여러 주석가들에 의해 보완되고 재해석되며 광범위한 영향력을 미쳤다. 우리나라 역시 이 영향권 안에서 삼국시대 이래로 <구장산술>을 기본 산학서로 취급해 왔고 19세기 조선 수학자 남병길은 이 책에 대한 주석서 <구장술해九章術解>를 출판했다. 본 연구에서는 이 두 책의 구성과 내용을 확인하고 그것의 교육적 활용 가능성에 대해 모색해본다.

고등학교 수학에서 $0^0$의 지도 방안 (A Study on Teaching $0^0$ in High School Mathematics)

  • 김동화;홍우철
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제24권2호
    • /
    • pp.283-300
    • /
    • 2010
  • 고등학생들이 부정형의 한 형태인 $0^0$을 올바로 이해하는데 어려움을 느낀다는 것은 오래전부터 알려져 왔으며, 비교적 최근까지도 $0^0$의 처리 방법에 대하여 수학자들 사이에 약간의 논란이 있었다. 고등학교 교육과정에는 $0^0$에 대한 명확한 처리방법이 명시되지 않고 있으므로 어떤 학생들은 그것의 값이 무엇인지 질문을 하기도 한다. 본 연구에서는 $0^0$과 관련된 자료들을 토대로 역사적 수학적 분석을 통하여 $0^0$은 부정형임을 명확히 하고, 현직 교사와 최근에 고등학교를 졸업한 학생들을 대상으로 실시한 간단한 설문조사를 통하여 고등학교 교육현장의 $0^0$에 대한 교수 실태를 파악한다. 그리고 교사와 예비교사를 위하여 $0^0$에 대한 효과적인 지도 방안에 대하여 논의한다.

초등학교 수학교과서에서의 양(量)의 계산에 대한 연구 (A Study on Quantity Calculus in Elementary Mathematics Textbooks)

  • 정은실
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제20권4호
    • /
    • pp.445-458
    • /
    • 2010
  • 이 연구는 양 개념의 발달 과정을 알아보고 초등학교에서 양의 계산을 어떤 방식으로 다루는지를 분석함으로써 교육과정이나 교과서의 구성에 대한 시사점을 찾아보려는 것이다. 이산량과 연속량의 이원론에 근거한 유클리드의 수와 양의 구분은 이후 수학자에게 큰 영향을 미치다가 스테빈에 의해 극복되었다. 양의 덧셈과 뺄셈은 오래전부터 시행되어 왔지만, 양의 곱셈과 나눗셈은 수학계에서 될 수 있는 대로 피하려고 하였다. 그러나 자연과학계에서는 전부터 물리량의 계산을 허용하여왔고, 물리량 체계를 모델화한 대수 구조를 만들어 양의 곱셈이나 나눗셈을 이론적으로 정당화하였다. 교육과정과 교과서를 조사해 본 결과 우리나라 초등학교 수학과에서는 다른 나라와 비교하여 양의 계산 지도를 등한시하고 있음이 드러났다. 앞으로 이에 대해 충분한 논의를 하여 우리나라의 교육과정에서도 양에 대해 좀 더 적극적으로 지도할 수 있도록 명시하고, 현재 삭제된 내포량도 수학과에서 다룰 수 있도록 해야 할 것이다. 문장제도 실생활 관련 문제를 많이 제시하여 자연스럽게 양의 계산을 할 수 있도록 해야 하며, 문장제를 해결하는 과정에서 수로 된 식만 쓸 것이 아니라 단위를 붙인 식을 써서 양적인 추론에 도움을 줄 수 있도록 하는 문제에 대해서도 논의할 필요가 있다.

  • PDF

Lakatos의 증명과 반박 방법에 따른 기하 교수.학습 상황 분석 연구 (A Research on the Teaching and Learning of Geometry Based on the Lakatos Proofs and Refutation Method)

  • 박경미
    • 대한수학교육학회지:학교수학
    • /
    • 제11권1호
    • /
    • pp.55-70
    • /
    • 2009
  • Lakatos 이론의 근저에 깔린 생각은 수학적 지식이 절대적이고 보편적이고 영원불변한 진리라기보다는 상대적이고 잠정적이며 오류가능성이 있다는 점이다. 수학사를 살펴보면 추측이 제기되어 일차적으로 증명되지만 그에 대한 반례가 나타나면서 증명이 개선되고 추측이 수정되는 예를 어렵지 않게 찾을 수 있다. 실제 이러한 Lakatos식의 증명과 반박의 과정은 수학자가 수학 지식을 창안할 때 뿐 아니라 학생들의 수학 교수 학습에 유용한 방법이 될 수 있다. 이에 본 연구는 Lakatos의 증명과 반박에 의한 교수 방법을 정리하고, 이에 대한 선행연구를 분석한 후, 중학교 수학 우수 학생들을 대상으로 하는 기하 교수 학습 상황에 Lakatos 이론을 적용하였다. 기하의 명제에서 패러독스를 유발시키는 원인을 찾고, 그 과정에서 발견한 성질을 추측으로 삼아 정당화하고 그 정당화가 기각되면서 새로이 증명되는 과정을 Lakatos 이론의 관점에서 분석하고 교육적 시사점을 도출하였다.

  • PDF

홍대용과 공학교육 (Hong Dae-Yong and Engineering Education)

  • 노태천
    • 공학교육연구
    • /
    • 제5권1호
    • /
    • pp.77-84
    • /
    • 2002
  • 홍대용은 서양의 과학기술이 수학적 원리와 정밀한 관측에 근거하고 있음을 확인하고, [주해수용(籌解需用)]이라는 수학책을 저술함으로써 수학자로 일컬을 만 하다. 그리고, 홍대용은 동양의 자연관과 우주관을 비판적으로 수용 검토하고, 서양의 과학사상에 근거하여 무한우주설을 포함한 여러 가지 진취적 과학사상을 제시함으로써, 조선후기의 자연과학자로 인정할 수 있는 업적을 남겼다. 또한, 실천을 중요시한 홍대용은 서양식 혼천의와 자명종을 이해?수용하고 기술자의 도움을 받아 제작하여, 자신의 개인관측소(籠水閣)에 설치할 정도로 기술자로서의 면모도 갖추었다. 홍대용의 과학자 및 기술자로서의 측면을 통하여, '수학적 사고, 창의적 구상, 실천적 활동' 등을 21세기 한국의 우수한 기술자를 양성하기 위한 교육방향으로 설정하여도 좋을 것으로 판단된다.

역사-발생적 분석을 통한 대수 지도 (On the Teaching of Algebra through Historico -Genetic Analysis)

  • 김성준
    • 한국수학사학회지
    • /
    • 제18권3호
    • /
    • pp.91-106
    • /
    • 2005
  • 수학사는 수학 교육에서 수학의 실제와 수학을 하는 사고 과정을 강조하기 위해 분석의 대상이 되어야 한다. 수학사를 분석하는 것은 수학적 활동을 이해하는 방법 가운데 하나로, 역사적으로 수학자들의 활동이 어떻게 변하면서 발전되어 왔는지, 그리고 수학적 개념들이 어떻게 전개되어 왔는지를 살펴보기 위한 것으로, 이러한 내용은 수학 교육적 관점에서 중요하게 다루어져야 한다. 본 연구는 이러한 관점에서 학교대수에서 다루는 문자 기호(미지수)와 음수를 중심으로 하여 수학사에서 등 장한 몇몇 텍스트를 분석하고 동시에 교육적인 논의를 이끌어내고자 한다. 이를 위해 먼저 수학교육에서 역사-발생적 분석의 필요성과 그 의의에 대해 살펴보고, 이러한 분석에서 제기되는 인식론적 장애에 대해 논의한다. 다음으로 역사-발생적 분석을 실제 대수 지도에 적용해보기 위해, 방정식에서 사용된 문자 기호(미지수)의 역사를 몇몇 텍스트를 통해 살펴보고 이를 선행된 실험연구의 결과와 함께 논의한다. 또한 음수의 역사를 개괄하면서 역시 몇몇 텍스트를 살펴보고, 음수의 역사를 대수 지도와 관련해서 논의한다. 수학사는 인류의 대역적인 학습 과정으로 학교수학에서 다루는 개념들에 의미 있는 토대를 마련해준다. 본 연구의 논의는 이러한 측면에 주목한 것으로 역사-발생적 분석을 대수 지도를 개선하기 위한 방안 가운데 하나로 본 것이다.

  • PDF

칠교판(七巧板)의 기하학적 특징을 이용한 교육자료 개발에 대한 연구 (A Study on Development of Instructional Materials Using Geometric Properties of Tangram)

  • 심상길;조정길
    • 한국수학사학회지
    • /
    • 제21권4호
    • /
    • pp.169-182
    • /
    • 2008
  • 칠교판을 관찰하고 사용하는 경험을 통해 칠교판 조각들 사이의 길이, 각도, 모양, 넓이 등과 같은 기학학적인 특성을 파악하고, 이를 이용하여 칠교판을 활용한 활동에서 조각들을 유의미하게 분류하고, 조각의 사용에 대한 조합 등을 구하여 체계적으로 문제를 해결할 수 있다 이러한 과정을 학생들이 직접 경험할 수 있도록 구체적인 발문 형태의 문제로 제공함으로써 칠교판을 학교수학에서 효율적으로 활용하기 위한 기초 자료로 제시할 수 있다. 이는 수학자가 새로운 정리를 발견하듯이, 소박하고 직관적인 상태에서 도형들의 특징을 파악하고, 학생들 수준에 맞는 활동을 통해 도형과 도형 사이의 관계를 유추하여 주어진 문제의 해답을 시행착오에 의존하는 것이 아니라 논리적으로 추론하여 체계적으로 해답을 찾는 경험을 제공하는 과학적인 지도 방법이다.

  • PDF

수학 영재들을 4차원 도형에 대한 탐구로 안내하는 사례 연구 (A Case Study on Guiding the Mathematically Gifted Students to Investigating on the 4-Dimensional Figures)

  • 송상헌
    • 영재교육연구
    • /
    • 제15권1호
    • /
    • pp.85-102
    • /
    • 2005
  • 이 연구는 경기과학고등학교 1학년 학생 5명을 대상으로 사사연구를 진행하면서 학생들이 탐구한 수학적인 내용에 대한 분석과 그 결과가 나오기까지 멘토링을 하는 지도교수의 역할을 설명하고 있다. 학생들이 탐구한 수학적인 내용은 4차원 도형의 모양과 그 도형들에 나타나는 수학적인 성질이다. 지도교수는 연구에 익숙하지 않은 학생들을 위하여 수학자 피코크가 제안했던 '형식불역의 원리'를 모델로 삼도록 했고, 지도교수는 학생들의 창조적인 산출물 생산을 격려하기 위해 수학교육학자 프로이덴탈의 '안내된 재발명의 방법'을 사용하였다. 학생들은 지도교수의 안내에 의한 (재)발명의 원리에 따라 기존에 이미 알고 있던 수학적 성질을 고차원 도형에 적용시키면서 확장, 일반화시켜나갔는데, 여기에는 '형식불역의 원리'라는 틀이 매우 유용하게 작용하였다. 지도교사는 학생들에게 3차원 도형을 2차원에 표현하는 겨냥도, 전개도, 평면그래프를 응용하여 4차원을 3차원과 2차원에 표현하는 방식을 탐구하도록 하였다. 이 과정에서 학생들은 이미 알려진 파스칼의 삼각형과 이항정리, 오일러 정리, 하세의 다이어그램 등을 4차원 이상의 도형을 탐구할 때에도 적용할 수 있음을 확인하였다. 그리고 몇 가지의 추측과 후속 연구 과제를 제안하였다. 학생들의 산출물들은 형식불역의 원리와 안내된 재발명의 방법의 결과물인 것이다. 이 연구는 사사연구의 과정에 도움이 될 수 있는 3가지의 제안과 그 실 예를 담고 있다.