• 제목/요약/키워드: 수학문제

검색결과 2,368건 처리시간 0.026초

FOCUS 문제해결과정이 수학 문제해결력 및 수학적 태도에 미치는 영향 (The Effects of the FOCUS Problem Solving Steps on Mathematical Problem Solving Ability and Mathematical Attitudes)

  • 이연주;류성림
    • 한국초등수학교육학회지
    • /
    • 제21권1호
    • /
    • pp.243-262
    • /
    • 2017
  • 본 연구에서는 FOCUS 문제해결과정을 적용한 교수.학습 방법이 학생들의 수학 문제해결력과 수학적 태도에 미치는 효과를 분석함으로써 앞으로의 수학학습을 개선하고자 하는데 목적이 있다. 본 연구에서는 4학년 1학기 수학의 2개 단원에 걸쳐 총 13차시에 대하여 FOCUS 문제해결과정을 적용하였고, 수학 문제해결력 검사와 수학적 태도 검사를 사전과 사후 모두 사용한 후 t-검정을 실시한 결과를 토대로 학생들의 변화를 분석하였다. 연구를 통하여 얻은 결론은 다음과 같다. 첫째, FOCUS 문제해결과정에 따른 학습활동이 학생들의 수학 문제해결력 향상에 긍정적인 효과를 보였다. 둘째, 수학적 태도 가운데 수학적 호기심, 수학적 반성, 수학적 가치의 3가지 요인에 있어서는 통계적으로도 유의미한 효과가 있는 것으로 나타났으며, 실험집단의 학생들의 변화를 분석한 결과에서는 수학적 태도에 속하는 6가지 요인 모두에 대하여 긍정적인 태도 형성에 영향을 주었다고 볼 수 있다. 셋째, FOCUS 단계에 따라 문제를 풀어봄으로써 학생 스스로 성공했을 때의 만족감을 느꼈으며 검토와 반성을 통하여 자신의 오류를 직접 찾고 해결해나갈 때의 기쁨으로 인하여 FOCUS 문제해결과정을 적용한 활동이 보다 지속적으로 이루어진다면 학생들의 문제해결력에 있어서도 크게 의미 있는 효과를 기대할 수 있을 것이다.

  • PDF

대학수학에서 증명문제의 다양한 평가

  • 김병무
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권2호
    • /
    • pp.125-132
    • /
    • 2004
  • 대학 교양수학 과정에서 수학적 명제를 증명하는 과정은 중요하다. 선행 연구들은 주관식 증명문제의 시험이 어려워 증명문제를 피하고 더 나아가 포기하게 만든다고 한다. 여기서는 대학 교양수학 과정에서 필요하고 중요한 기본 개념이나 정리를 선정하여 선택형 또는 참, 거짓 평가문항으로 개발하고 학생들에게 시험을 보게 하여 결과를 분석하고 이를 통해 증명문제의 두려움을 조금이라도 줄여주고 기본개념의 확실한 이해를 위해 도움을 제공하려고 한다.

  • PDF

문제해결과 관련된 제7차 초등학교 수학과 교육과정 및 교과용 도서 분석 (An Analysis on Contents Related to Problem Solving in the 7th Elementary Mathematics Curriculum and Instructional Materials)

  • 방정숙;김상화
    • 대한수학교육학회지:학교수학
    • /
    • 제8권3호
    • /
    • pp.341-364
    • /
    • 2006
  • 본 논문은 수학과 교육과정에서 최근 지속적으로 강조되어 온 문제해결과 관련하여 제7차 초등학교 교육과정에서 제시하고 있는 내용을 살펴보고, 이와 관련하여 현재 개정 시안에서 논의되고 있는 내용을 분석하였다. 또한 수학 교과서와 익힘책에서 교육과정의 기본적인 취지를 어떻게 구현하고 관련 세부 내용을 어떻게 구체화하고 있는지 알아보기 위해, 문제해결전략, 문제영역, 문제유형별로 문제해결 관련 내용을 상세하게 분석하였다. 이를 토대로 문제해결과 관련하여 차기 교육과정 및 교과용 도서 개발에 기초적인 자료 및 시사점을 제공하고자 한다.

  • PDF

초등 영재교육에 적용 가능한 이산수학 프로그램 개발 연구

  • 최근배;안선영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제19권1호통권21호
    • /
    • pp.167-189
    • /
    • 2005
  • 본고에서는 영재교육에서 실제 학습자료의 부족과 이산수학의 중요성이 부각되고 있는 최근의 동향을 감안하여, 초등학교 영재교육에 적용 가능한 이산수학 프로그램을 개발하고자 한다. 우선 프로그램의 개발에 선행하여 관련 이론에 대한 고찰을 하였으며 제 7차 초등학교 수학과 교육과정의 이산수학 관련 내용을 분석하석 교육과정의 내용을 심화 ${\cdot}$ 발전할 수 있는 방안에 초점을 두었다. 특히 이산수학과 관련된 기존의 수학학습 프로그램들은 대부분 순수 수학적 이론을 제시하고 그에 따른 문제를 풀어보는 형식으로 구성되어 있는데, 본고에서는 이산수학의 이론을 중심으로, 문제해결에서 알고리즘적으로 사고하는 능력을 키울 수 있도록 하는 것에 초점을 두어 프로그램을 개발하고자 한다. 즉, 프로그램 자체가 하나의 수학적 원리를 탐구해 가는 과정이 되는 것이다. 또한 이산수학이 수학적 문제해결 학습과 연관됨에 착안하여 프로그램은 Polya의 문제해결학습을 바탕으로 구성하고자 한다.

  • PDF

초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계 (The Relationship between Mathematically Gifted Elementary Students' Math Creative Problem Solving Ability and Metacognition)

  • 신승윤;류성림
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제17권2호
    • /
    • pp.95-111
    • /
    • 2014
  • 본 연구의 목적은 초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계, 수학 창의적 문제해결력에 대한 메타인지 구성 요소별 영향력을 밝혀 수학 창의적 문제해결력을 향상시키기 위한 교수 방법으로서 메타인지적 접근에 대한 기초 정보를 제공하는 것이다. 연구 대상은 광역시 소재 대학교 영재교육원의 5학년 초등수학영재 40명과 초등학교 영재학급의 5학년 초등수학영재 40명으로 총 80명이다. 연구결과 초등수학영재 집단 안에서도 수학 창의적 문제해결력과 메타인지의 개인차가 크게 나타났으며 수학 창의적 문제해결력과 메타인지는 유의미한 상관 관계를 보였다. 또한 수학 창의적 문제해결력 전체에 상대적으로 가장 큰 영향을 미치는 메타인지 구성요소는 메타 인지적 지식으로 나타났고, 수학 창의적 문제해결력 중 유창성과 독창성 요소에 가장 큰 영향을 미치는 메타인지 구성요소는 메타인지적 지식이며, 융통성에 가장 큰 영향을 미치는 메타인지적 구성요소는 메타인지적 자기조정으로 나타났다. 메타인지적 경험은 상대적으로 적은 영향을 미치는 것으로 나타났다. 따라서 수학 창의적 문제해결력과 메타인지와의 관련성을 고려하여 초등수학영재의 창의적 문제해결력을 높일 수 있는 메타인지적 접근을 기반으로 한 구체적인 교육과정과 수학영재 교육 프로그램이 개발되어야 함을 시사하는 것이라 볼 수 있다.

초등학교 5학년 학생들의 문제 만들기 활동 분석 (Analysis of problem posing activity of fifth grade students)

  • 성창근;이남경;이대현
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제20권3호
    • /
    • pp.193-204
    • /
    • 2017
  • 본 연구는 문제 만들기 활동과 수학 수업을 통합할 수 있는 실제적 방안을 모색하고자 수행되었다. 이를 위해 일상적으로 이루어지는 수학 수업의 정리 단계에서 문제 만들기 활동을 실행하고, 학생들이 만든 문제를 체계적인 절차와 준거를 사용해 분석하였다. 먼저 학생들이 만든 540문제 중 수학적으로 해결 가능한 문제는 81%, 오류가 있는 문제는 18%로 나타났다. 이어서 수학적으로 해결 가능한 문제를 복잡성 수준에 따라 분석하였는데, 상-수준 13%, 중-수준 30%, 하-수준 57%였다. 마지막으로 오류 유형으로 분류된 비-수학적 문제, 단순한 진술, 해결 불가능 문제는 학생들의 성취 수준과 학습 내용에 따라 다양하게 분포되어 있었다. 본 연구는 학생들이 생성한 문제를 분석하기 위한 체계적인 절차와 준거를 제시하고 수학 수업과 문제 만들기 활동을 통합할 수 있는 방향을 제시했다는 점에서 의의를 찾을 수 있다.

반성적 문제 만들기 활동이 초등학생들의 문제해결력 및 수학적 태도에 미치는 영향 (The Effects of Reflective Problem Posing Activities on Students' Problem Solving Ability and Attitudes toward Mathematics)

  • 배준환;박만구
    • 한국초등수학교육학회지
    • /
    • 제20권2호
    • /
    • pp.311-331
    • /
    • 2016
  • 본 연구는 학습자 스스로 수학적 오류를 분석하고 반성적 문제 만들기 활동을 하도록 한 것이 문제해결력과 수학적 태도에 미치는 영향을 알아보기 위한 것이다. 본 연구를 위하여 서울특별시 강서구에 소재한 초등학교 5학년 2개 반(62명)을 대상으로 실험집단과 비교집단을 선정하였다. 연구 결과 반성적 문제 만들기 활동은 학생들로 하여금 구하고자 하는 것을 파악하는 능력과 문제를 해결하는데 필요한 조건을 선별하여 활용하는 능력을 향상시켜 학생들의 문제해결력 향상에 효과적이었다. 또한, 학습자가 가지고 있었던 수학적 오개념을 수정하고 올바른 수학적 개념을 정립하는데 도움을 주었다. 그리고 반성적 문제 만들기 활동은 학생들의 수학적 의지를 향상시키고 반성적 사고를 촉진시키며, 반성의 과정에서 자연스럽게 스스로 자신의 문제를 풀이 과정을 점검하는 습관을 갖도록 하는데 도움을 주었다. 학습자는 반성적 문제가 올바르게 만들어졌는지 점검하고 이것을 바르게 해결하기 위해, 토의 활동에서 타인과의 수학적 의사소통에 적극적으로 참여하는 모습과 함께 끝까지 스스로 문제를 해결하고자 하는 과제집착력을 강하게 나타냈다.

초등학교 고학년 아동의 정의적 특성, 수학적 문제 해결력, 추론능력간의 관계

  • 이영주;전평국
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제8권
    • /
    • pp.137-150
    • /
    • 1999
  • 본 연구의 목적은 아동들의 수학 교과에 대한 정의적 특성과 수학적 문제 해결력, 추론 능력간의 상호 관계를 구명하고, 이러한 관계들은 아동의 지역적인 환경에 따라 차이가 있는지를 분석하는 것이다. 본 연구를 통하여 얻은 결론은 다음과 같다. 정의적 특성의 하위 요인 중 수학적 문제 해결력과 귀납적 추론 능력에 대한 설명력이 가장 높은 요인은 수학교과에 대한 자아개념인 것으로 나타났으며, 연역적 추론 능력에 대한 설명력은 학습 습관이 가장 높은 것으로 나타났다. _그리고 귀납적 추론 능력이 연역적 추론 능력 보다 수학적 문제 해결력에 대한 설명력이 더 높은 것으로 나타났으며, 수학적 문제 해결력과 귀납적 추론 능력은 지역별로 유의한 차가 나타났으나 연역적 추론 능력은 지역간 유의한 차이가 나타나지 않았다.

  • PDF

초등학교 수업에서 수학 교과 역량으로서의 문제 해결 능력을 함양하기 위한 지도 방안 탐색 (Research on the Instructional Strategies to Foster Problem Solving Ability as Mathematical Subject Competency in Elementary Classrooms)

  • 최인영;방정숙
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제21권3호
    • /
    • pp.351-374
    • /
    • 2018
  • 2015 개정 교육과정에서는 수학 교과 역량으로서의 문제 해결 능력을 함양하기 위한 교수 학습 방법으로 협력적 문제 해결과 수학적 모델링을 새롭게 제시하였다. 따라서 이에 대한 교사들의 이해를 지원하는 것이 필요하다. 본 연구에서는 협력적 문제 해결과 수학적 모델링을 수학 수업에 반영하여 구체적인 지도 방안으로서 문제 및 수업지도안의 개발, 필요한 교사의 역할을 제시하였다. 10차시의 문제 해결 과정에서 학생들은 스스로 수학적 모델을 구성하였고, 해결 방법을 공유하면서 모델을 수정 보완하였다. 특히 교사가 문제 해결을 공유하고 논의하는 과정을 명확히 안내하는 경우에 학생들이 서로의 해결 방법을 비교하고 자신의 해결 방법을 보완하는 모습이 보다 잘 나타났다. 연구 결과를 토대로 수학 교과 역량으로서의 문제 해결 능력을 함양하기 위한 지도 방안에 대한 시사점을 논의하였다.

서술형 수학 쓰기 수업이 초등학생의 문제해결 및 수학적 성향에 미치는 효과 (The Effect of Essay Writing-Centered Mathematics Teaching on Problem Solving and Mathematical Disposition)

  • 김효선;오영열
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제28권1호
    • /
    • pp.131-154
    • /
    • 2014
  • 이 연구는 서술형 수학 쓰기 활동이 초등학생의 문제 해결 및 수학적 성향에 미치는 효과를 알아보는데 목적이 있다. 본 연구를 실행하기 위해, 서울B초등학교 6학년 학급에 문제 해결력 및 수학적 성향 검사를 실시하여 동질성을 가지는 두 개의 학급을 선정하였으며, 실험집단에는 서술형 수학 쓰기 활동 수업을 실시하였으며, 비교집단에는 교과서 및 교사용 지도서 중심의 일반적인 수업을 실시하였다. 실험처치는 약 두 달 동안 15회에 걸쳐 실시하였고, 서술형 수학 쓰기 활동의 효과를 알아보기 위해 문제 해결력 검사를 실시하여 두 집단 간 성취도를 t-test로 분석하였으며, 검사지에 나타난 학생들의 서술 내용을 분석하여 문제 해결 과정에서 나타난 특징을 알아보았다. 또한 수학적 성향 검사를 실시하고 그 결과를 독립표본 t-test로 분석하였으며, 서술형 평가에 대한 성향을 묻는 설문조사를 실시하고 학생들의 반응을 분석하였다. 본 연구 결과, 서술형 수학 쓰기 활동은 학생들의 문제 해결력과 문제해결과정, 수학적 성향에 긍정적인 영향을 미치는 것으로 나타났으며, 또한 서술형 평가에 대한 학생들의 인식이 개선된 것으로 나타났다.