• Title/Summary/Keyword: 수정유용방향법

Search Result 14, Processing Time 0.032 seconds

The Optimum Design of Airfoil Shape with Parallel Computation (병렬연산을 이용한 익형의 최적 설계)

  • Jo,Jang-Geun;Park,Won-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The aerodynamic optimization method for airfoil design was described in this paper. The Navier-Stokes equations were solved to consider the viscous flow information around an airfoil. The Modified Method of Feasible Direction(MMFD) was used for sensitivity analysis and the polynomial interpolation was used for distance calculation of the minimization. The Message Passing Interface(MPI) library of parallel computation was adopted to reduce the computation time of flow solver by decomposing the entire computational domain into 8 sub-domains and one-to-one allocating 8 processors to 8 sub-domains. The parallel computation was also used to compute the sensitivity analysis by allocating each search direction to each processor. The present optimization reduced the drag of airfoil while the lift is maintained at the tolerable design value.

Development of an Automated Aero-Structure Interaction System for Multidisciplinary Design Optimization for the Large AR Aircraft Wing (가로세로비가 큰 항공기 날개의 다분야 통합 최적설계를 위한 자동화 공력-구조 연계 시스템 개발)

  • Jo, Dae-Sik;Yoo, Jae-Hoon;Joh, Chang-Yeol;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.716-726
    • /
    • 2010
  • In this research, design optimization of an aircraft wing has been performed using the fully automated Multidisciplinary Design Optimization (MDO) framework, which integrates aerodynamic and structural analysis considering nonlinear structural behavior. A computational fluid dynamics (CFD) mesh is generated automatically from parametric modeling using CATIA and Gambit, followed by an automatic flow analysis using FLUENT. A computational structure mechanics (CSM) mesh is generated automatically by the parametric method of the CATIA and visual basic script of NASTRAN-FX. The structure is analyzed by ABAQUS. Interaction between CFD and CSM is performed by a fully automated system. The Response Surface Method (RSM) is applied for optimization, helping to achieve the global optimum. The optimization design result demonstrates successful application of the fully automated MDO framework.

Multi-Disciplinary Design Optimization of a Wing using Parametric Modeling (파라미터 모델링을 이용한 항공기 날개의 다분야 설계최적화)

  • Kim, Young-Sang;Lee, Na-Ri;Joh, Chang-Yeol;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.229-237
    • /
    • 2008
  • In this research, a MDO(multi-disciplinary design optimization) framework, which integrates aerodynamic and structural analysis to design an aircraft wing, is constructed. Whole optimization process is automated by a parametric-modeling approach. A CFD mesh is generated automatically from parametric modeling of CATIA and Gridgen followed by automatic flow analysis using Fluent. Finite element mesh is generated automatically by parametric method of MSC.Patran PCL. Aerodynamic load is transferred to Finite element model by the volume spline method. RSM(Response Surface Method) is applied for optimization, which helps to achieve global optimum. As the design problem to test the current MDO framework, a wing weight minimization with constraints of lift-drag ratio and deflection of the wing is selected. Aspect ratio, taper ratio and sweepback angle are defined as design variables. The optimization result demonstrates the successful construction of the MDO framework.

Optimization Design of Cascade with Rotor-Stator Interaction Effects (정익과 동익의 상호작용을 고려한 익렬의 공력 최적 설계)

  • Cho, J, K.;Jung, Y. R.;Park, W. G.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.293-299
    • /
    • 2001
  • Since the previous cut-and-try design algorithm require much cost and time, it has recently been concerned the automatic design technique using the CFD and optimum design algorithm. In this study, the Navier-Stokes equations is solved to consider the more detail viscous flow informations of cascade interaction and O-H multiblock grid system is generated to impose an accurate boundary condition. The cubic-spline interpolation is applied to handle a relative motion of a rotor to the stator. To validate present procedure, the time averaged aerodynamic loads are compared with experiment and good agreement obtained. Once the N-S equations have been solved, the computed aerodynamic loads may be used to computed the sensitivities of the aerodynamic objective function. The Modified Method of feasible Direction(MMFD) is usef to compute the

  • PDF

Study of Analysis about Learning Objectives of Informatics Textbooks in Middle School using Anderson's Taxonomy of Educational Objectives (Anderson의 교육목표분류법을 이용한 중학교 정보 교과서의 수업목표 분석에 관한 연구)

  • Choe, Hyun Jong
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.1
    • /
    • pp.51-63
    • /
    • 2014
  • Learning objectives is used to be a good guidance of a class evaluation and activity design for an effective teaching and learning activities in class. Anderson's taxonomy of Educational Objectives that was a revision of Bloom's taxonomy has presented in research field of other subject matters and used as a better guideline for analyzing learning objectives in textbook and achievement levels in test recently. This study has behaved some questionnaires for that Anderson's taxonomy is suitable for a guideline of stating learning objective in Informatics subject matter, and analyzed the learning objectives in 6 Informatics textbooks by Anderson's taxonomy. It has proposed that Anderson's taxonomy is satisfactory for expressing learning objective of Informatics subject matter in class and some dimensions, such as conceptual and procedural knowledge, understand, and apply, are much more used in learning objectives in 6 Informatics textbooks. This results will be a good case study in research about taxonomy of educational objectives and development of Informatics textbooks.

  • PDF

A case study for the dispersion parameter modification of the Gaussian plume model using linear programming (Linear Programming을 이용한 가우시안 모형의 확산인자 수정에 관한 사례연구)

  • Jeong, Hyo-Joon;Kim, Eun-Han;Suh, Kyung-Suk;Hwang, Won-Tae;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.311-319
    • /
    • 2003
  • We developed a grid-based Gaussian plume model to evaluate tracer release data measured at Young Gwang nuclear site in 1996. Downwind distance was divided into every 10m from 0.1km to 20km, and crosswind distance was divided into every 10m centering released point from -5km to 5km. We determined dispersion factors, ${\sigma}_y\;and\;{\sigma}_z$ using Pasquill-Gifford method computed by atmospheric stability. Forecasting ability of the grid-based Gaussian plume model was better at the 3km away from the source than 8km. We confirmed that dispersion band must be modified if receptor is far away from the source, otherwise P-G method is not appropriate to compute diffusion distance and diffusion strength in case of growing distance. So, we developed an empirical equation using linear programming. An objective function was designed to minimize sum of the absolute value between observed and computed values. As a result of application of the modified dispersion equation, prediction ability was improved rather than P-G method.

Optimum Design of Aerodynamic Shape of Cascade with Rotor-Stator Interactions (정익과 동익의 상호작용을 고려한 익렬의 공력 형상 최적 설계)

  • Cho, J. K.;Park, W. G.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.40-45
    • /
    • 2002
  • Since the previous cut-and-try design algorithm requires much cost and time, the automated design technique with the CFD and optimum design algorithm has recently been concerned. In this work, the Navier-Stokes equation was solved to gain more detailed viscous flow information of cascade with rotor-stator interactions. The H-grid embedded by O-grid was generated to obtain more accurate solution by eliminating the branch cut of H-grid near airfoil surface. To handle the relative motion of the rotor to the stationary stator, the sliding multiblock method was applied and the cubic-spline interpolation was used on the block interface boundary. To validate present procedure, the time-averaged aerodynamic loads were compared with experimeatal data. A good agreement was obtained. The Modified Method of Feasible Direction (MMFD) was used to carry out the sensitivity analysis of the change of aerodynamic performance by the changes of the cascade geometry. The present optimization of the cascade gave a dramatic reduction of the drag while the lift maintains at the value within the user-specified tolerance.

A Relief Method to Obtain the Solution of Optimal Problems (최적화문제를 해결하기 위한 완화(Relief)법)

  • Song, Jeong-Young;Lee, Kyu-Beom;Jang, Jigeul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.155-161
    • /
    • 2020
  • In general, optimization problems are difficult to solve simply. The reason is that the given problem is solved as soon as it is simple, but the more complex it is, the very large number of cases. This study is about the optimization of AI neural network. What we are dealing with here is the relief method for constructing AI network. The main topics deal with non-deterministic issues such as the stability and unstability of the overall network state, cost down and energy down. For this one, we discuss associative memory models, that is, a method in which local minimum memory information does not select fake information. The simulated annealing, this is a method of estimating the direction with the lowest possible value and combining it with the previous one to modify it to a lower value. And nonlinear planning problems, it is a method of checking and correcting the input / output by applying the appropriate gradient descent method to minimize the very large number of objective functions. This research suggests a useful approach to relief method as a theoretical approach to solving optimization problems. Therefore, this research will be a good proposal to apply efficiently when constructing a new AI neural network.

Developing Sequential ConcepTests for In-service Science Teachers' Training based on Peer Instruction: Focus on 'Principle of Pinhole Camera' (동료 교수법 기반의 과학교사 연수를 위한 단계형 개념검사문항 개발 -바늘구멍 사진기의 원리 학습을 중심으로-)

  • Lee, Ji-Won;Kim, Jong-Won;Kim, Kyu-Hwan;Hwang, Myung-Su;Kim, Jung-Bog
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.2
    • /
    • pp.229-248
    • /
    • 2013
  • The purpose of this study is to develop sequential concept tests (ConcepTest) for teachers' conceptual change on the straight propagation of light through in-service training of science teachers by peer instruction. We revised the ConcepTests for attaining the goal concept by implementing similar training courses for teachers three times and analyzing the results using both Hake gain and verbal protocol. The final form helped most teachers to reach the goal concept. While teachers are solving a given concept problem test, they had shown not only significant cognitive conflict to select one among candidate answers, but also used the concept obtained through the previous problem. The sequential ConcepTests developed in this study can be useful for training elementary and secondary teachers or pre-service teacher education.

Optimal Radiation Port Arrangements for Hepatic Tumor using 3-dimensional Conformal Radiotherapy Planning (3차원입체조형방사선치료 계획 시 간종괴의 위치에 따른 최적 조사 방향의 결정)

  • Lee, Ik-Jae;Seong, Jin-Sil;Shim, Su-Jung;Jeong, Kyoung-Keun;Cho, Kwang-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.187-195
    • /
    • 2006
  • The purpose of this study was to investigate the optimal beam arrangements for hepatic tumors, according to the location of the hepatic tumor and its relationship to organs at risk (OARs). The virtual gross tumor volumes were divided into four groups according to the Couinaud's classification. Several plans were made for each virtual target, and these plans were compared for the normal tissue complication probabilities (NTCP). For group I, NTCP improved as the number of the beam ports increased. However, plans with more than 5 ports had little advantage. For group II, plans with the beam directions from the anterior side showed better results. Group III contained many OARs near the target, which placed restrictions on the beam-directions. Multi-directional plans yielded a higher dose to the OARs than a simple two-port plan using right anterior oblique and posterior beam (RAO/PA). For group IV, a simple RAO/PA port plan was adequate for protection of remaining liver. NTCP can significantly vary between radiotherapy plans when the location of the tumor and its neighboring OARs are taken into consideration. The results in this study of optimal beam arrangements could be a useful set of guidelines for radiotherapy of hepatic tumors.