• Title/Summary/Keyword: 수리-구조모델

Search Result 148, Processing Time 0.022 seconds

Application of the Homogenization Analysis to Calculation of a Permeability Coefficient (투수계수 산정을 위한 균질화 해석법의 적응)

  • 채병곤
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 2004
  • Hydraulic conductivity along rock fracture is mainly dependent on fracture geometries such as orientation, aperture, roughness and connectivity. Therefore, it needs to consider fracture geometries sufficiently on a fracture model for a numerical analysis to calculate permeability coefficient in a fracture. This study performed new type of numerical analysis using a homogenization analysis method to calculate permeability coefficient accurately along single fractures with several fracture models that were considered fracture geometries as much as possible. First of all, fracture roughness and aperture variation due to normal stress applied on a fracture were directly measured under a confocal laser scaning microscope (CLSM). The acquired geometric data were used as input data to construct fracture models for the homogenization analysis (HA). Using the constructed fracture models, the homogenization analysis method can compute permeability coefficient with consideration of material properties both in microscale and in macroscale. The HA is a new type of perturbation theory developed to characterize the behavior of a micro inhomogeneous material with a periodic microstructure. It calculates micro scale permeability coefficient at homogeneous microscale, and then, computes a homogenized permeability coefficient (C-permeability coefficient) at macro scale. Therefore, it is possible to analyze accurate characteristics of permeability reflected with local effect of facture geometry. Several computations of the HA were conducted to prove validity of the HA results compared with the empirical equations of permeability in the previous studies using the constructed 2-D fracture models. The model can be classified into a parallel plate model that has fracture roughness and identical aperture along a fracture. According to the computation results, the conventional C-permeability coefficients have values in the range of the same order or difference of one order from the permeability coefficients calculated by an empirical equation. It means that the HA result is valid to calculate permeability coefficient along a fracture. However, it should be noted that C-permeability coefficient is more accurate result than the preexisting equations of permeability calculation, because the HA considers permeability characteristics of locally inhomogeneous fracture geometries and material properties both in microscale and macroscale.

Modeling Three-dimensional Free Surface Flow around Thin Wall Incorporation Hydrodynamic Pressure on δ-coordinate (δ-좌표계에서 동수압 계산 수중벽체 인근흐름 수치모형실험)

  • Kim, Hyo-Seob;Yoo, Ho-Jun;Jin, Jae-Yul;Jang, Chang-Hwan;Lee, Jung-Su;Baek, Seung-Won
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.327-336
    • /
    • 2014
  • Submerged thin walls are extreme case of submerged rectangular blocks, and could be used for many purposes in rivers or coastal zones, e.g. to tsunami. To understand flow characteristics including flow and pressure fields around a specific submerged thin wall a numerical model was applied which includes computation of hydrodynamic pressure on ${\sigma}$-coordinate. ${\sigma}$-coordinate has strong merits for simulation of subcritical flow over mild-sloped beds. On the other hand ${\sigma}$-coordinate is quite poor to treat sharp structures on the bed. There have been a few trials to incorporate dynamic pressure in ${\sigma}$-coordinate by some researchers. One of the previous approaches includes process of sloving the Poisson equation. However, the above method includes many high-order terms, and requires long cpu for simulation. Another method SOLA was developed by Hirt et al. for computation of dynamic pressure, but it was valid for straight grid system only. Previous SOLA was modified for ${\sigma}$-coordinate for the present purpose and was adopted in a model system, CST3D. Computed flow field shows reasonable behaviour including vorticity is much stronger than the upstream and downstream of the structure. The model was verified to laboratory experiments at a 2DV flume. Time-average flow vectors were measured by using one-dimensional electro-magnetic velocimeter. Computed flow field agrees well with the measured flow field within 10 % error from the speed point of view at 5 profiles. It is thought that the modified SOLA scheme is useful for ${\sigma}$-coordinate system.

IP Modeling and Inversion Using Complex Resistivity (복소 전기비저항을 이용한 IP 탐사 모델링 및 역산)

  • Son, Jeong-Sul;Kim, Junhg-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.138-146
    • /
    • 2007
  • This paper describes 2.5D induced polarization (IP) modeling and inversion algorithms using complex resistivity. The complex resistivity method has merits for acquiring more valuable information about hydraulic parameters and pore fluid than the conventional IP methods. The IP modeling and inversion algorithms are developed by allowing complex arithmetic in existing DC modeling and inversion algorithms. The IP modeling and inversion algorithms use a 2.5D DC finite-element algorithm and a damped least-squares method with smoothness constraints, respectively. The accuracy of the IP modeling algorithm is verified by comparing its responses of two synthetic models with two different approaches: linear filtering for a three-layer model and an integral equation method for a 3D model. Results from these methods are well matched to each other. The inversion algorithm is validated by a synthetic example which has two anomalous bodies, one is more conductive but non-polarizable than the background, and the other is polarizable but has the same resistivity as the background. From the inverted section, we can cleary identify each anomalous body with different locations. Furthermore, in order to verify its efficiency to the real filed example, we apply the inversion algorithm to another three-layer model which includes phase anomaly in the second layer.

A Proposal of New Breaker Index Formula Using Supervised Machine Learning (지도학습을 이용한 새로운 선형 쇄파지표식 개발)

  • Choi, Byung-Jong;Park, Chang-Wook;Cho, Yong-Hwan;Kim, Do-Sam;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.384-395
    • /
    • 2020
  • Breaking waves generated by wave shoaling in coastal areas have a close relationship with various physical phenomena in coastal regions, such as sediment transport, longshore currents, and shock wave pressure. Therefore, it is crucial to accurately predict breaker index such as breaking wave height and breaking depth, when designing coastal structures. Numerous scientific efforts have been made in the past by many researchers to identify and predict the breaking phenomenon. Representative studies on wave breaking provide many empirical formulas for the prediction of breaking index, mainly through hydraulic model experiments. However, the existing empirical formulas for breaking index determine the coefficients of the assumed equation through statistical analysis of data under the assumption of a specific equation. In this paper, we applied a representative linear-based supervised machine learning algorithms that show high predictive performance in various research fields related to regression or classification problems. Based on the used machine learning methods, a model for prediction of the breaking index is developed from previously published experimental data on the breaking wave, and a new linear equation for prediction of breaker index is presented from the trained model. The newly proposed breaker index formula showed similar predictive performance compared to the existing empirical formula, although it was a simple linear equation.

A Study on Prediction of Earth Retaining Work Cost in the Project Planning Stage -Focusing on Apartment Construction Projects in Seoul- (사업기획단계에서 흙막이 공사비 예측에 관한 연구 -서울시내 아파트 건설사업을 중심으로-)

  • Lee, Jin-Kyu;Yang, Kyung-Jin;Park, Ki-Hyeon;Kim, Chan-kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.385-392
    • /
    • 2021
  • In general, earth retaining work in construction works enables the construction of structures, prevents the displacement of the surrounding ground to the maximum extent, and plays an important role in ensuring the safety of the surrounding structures and field workers. The earth retaining work and the construction method differ according to the various ground characteristics, surrounding topographical characteristics, repair environment, and design conditions. In particular, in the case of Seoul city, the environments and ground conditions differ according to the area. This study analyzed the earth retaining work cost mainly for the apartment construction project in Seoul and calculated the approximate earth retaining work cost at the project planning stage. A model was developed to predict the cost of earth retaining work that matches the characteristics of Seoul City and predict the construction cost for earth retaining work. This paper presents the predicted earth retaining work cost using a multiple regression model that applies 10 project outlines as independent variables. The error rate of the prediction result of the earth retaining work cost of the apartment construction project in Seoul using multiple regression models was 10.75%.

Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion (수중폭발에 의한 해중터널의 동적거동)

  • Hong, Kwan-Young;Lee, Gye-Hee;Lee, Seong-Lo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.215-226
    • /
    • 2018
  • In this paper, to estimate the dynamic behavior of a submerged floating tunnel(SFT) by underwater explosion(UE), the SFT is modeled and analyzed by the explicit structural analysis package LS-DYNA. The section of SFT near to explosion point is modeled to shell and solid elements using elasto-plasticity material model for concrete tubular section and steel lining. And the other parts of the SFT are modeled to elastic beam elements. Also, mooring lines are modeled as tension-only cable elements. Total mass of SFT is including an added mass by hydrodynamic effect. The buoyancy on the SFT is considered in its initial condition using a dynamic relaxation method. The accuracy and the feasibility of the analysis model aree verified by the results of series of free field analysis for UE. And buoyancy ratio(B/W) of SFT, the distance between SFT and an explosion point and the arrangement of mooring line aree considered as main parameters of the explosion analysis. As results of the explosion analysis, the dynamic responses such as the dent deformation by the shock pressure are responded less as more distance between SFT and an explosion point. However, the mooring angle of the diagonal mooring system can not affect the responses such as the horizontal displacement of SFT by the shock pressure.

Optimal Location Modeling for Elementary Student's Care facility using Public Data (공공데이터를 활용한 초등학생 돌봄시설의 최적입지 선정)

  • Lee, Ji-Won;Kim, Ji-Young;Yu, Ki-Yun;Yang, Sung-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.109-122
    • /
    • 2019
  • The expansion of double-income households is increasing the social interest in child care. In particular, children's entrance into elementary school is considered to be the main cause of women's career break as well as childbirth. This study proposes an optimal location selection method for caring facilities for elementary school students. As a candidate for care facilities, we selected existing child care facilities. We proposed a dual structure evaluation method that considers locational characteristics as well as mathematical optimization when selecting the optimal location. The experiment was conducted in Songpa-gu, Seoul. A total of 36 optimal locations were selected from a total of 258 candidate facilities. First, the evaluation criteria were established using public data, and the primary candidate facilities were selected by ranking the location scores. At this time mesh resampling method was used to integrate various public data into one. Next, the final care facilities were selected using the p-median method. The results chosen are not only the optimal location considering total distance but also satisfy various location criteria considering the characteristics of the care facility. We expect that the proposed method will contribute to public data convergence or utilization and it will be helpful for policy decision when selecting the optimal location for public facilities.

Distributions of Endangered Fish Species and Their Relations to Chemical Water Quality-Ecological Stream Health in Geum-River Watershed (금강 대권역 대표 멸종위기 담수어류의 분포 특성 및 이화학적 수질-하천 생태건강도와의 관계분석)

  • Lee, Sang-Jae;An, Kwang Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.6
    • /
    • pp.986-995
    • /
    • 2016
  • The objective of this study was to analyze the distribution of endangered fish species and elucidate their relations on chemical water quality, physical habitat conditions and ecological stream health. The dominant species in the watershed was Pseudopungtungia nigra (Pn), Gobiobotia macrocephala (Gm), Gobiobotia brevibarba (Gb), Liobagrus obesus (Lo), and Iksookimia choii (Ic) in the order. The species of Pn designated as "critical endangered species (I) (CER)", was most widely distributed species among the endangered species, so the designation of the species should be re-evaluated. The endangered species was most popular (4 species, 384 individuals) in the Cho-River region of eighteen lotic regions. According to the analysis of chemical tolerance limits in the habitats with endangered fish species, biological oxygen demand (BOD) and total phosphorus (TP) was analyzed as "very good" (Ia) and "good condition" in the chemical criteria of the Ministry of Environment, Korea. Also, chemical conditions, based on ammonia-N ($NH_{4+}$), total nitrogen (TN), phosphate-P ($PO_{4^-}P$) were much better in the habitat with endangered species (Hw) than the habitat without endangered species (Ho). In the meantime, the species of Ic showed wide ranges on the chemical tolerance, so physical habitat conditions, such as the size of substrate particles (sand) and hydrological regime, were considered as more important factors than the chemical water quality, if the water quality is not largely degraded. The endangered species were also more distributed in the high-order (4-6) streams than the low-order (1-3) streams. The evaluation of ecological stream health, based on multi-metric model of the Index of Biological Integrity (IBI), showed the large difference between the Hw (21.6, fair condition)and Ho (30.5, good condition), indicating that the habitat maintained well chemically and physically had higher distributions of endangered species. Overall, the designation of CER on the Pn should be re-evaluated due to wide-distributions, and the protections from water pollution and the habitat conservations on the endangered species are necessary in the watershed.