IP Modeling and Inversion Using Complex Resistivity

복소 전기비저항을 이용한 IP 탐사 모델링 및 역산

  • Son, Jeong-Sul (Geotechnical Engineering Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Junhg-Ho (Geotechnical Engineering Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yi, Myeong-Jong (Geotechnical Engineering Division, Korea Institute of Geoscience and Mineral Resources)
  • 손정술 (한국지질자원연구원 지반안전연구부) ;
  • 김정호 (한국지질자원연구원 지반안전연구부) ;
  • 이명종 (한국지질자원연구원 지반안전연구부)
  • Published : 2007.05.31

Abstract

This paper describes 2.5D induced polarization (IP) modeling and inversion algorithms using complex resistivity. The complex resistivity method has merits for acquiring more valuable information about hydraulic parameters and pore fluid than the conventional IP methods. The IP modeling and inversion algorithms are developed by allowing complex arithmetic in existing DC modeling and inversion algorithms. The IP modeling and inversion algorithms use a 2.5D DC finite-element algorithm and a damped least-squares method with smoothness constraints, respectively. The accuracy of the IP modeling algorithm is verified by comparing its responses of two synthetic models with two different approaches: linear filtering for a three-layer model and an integral equation method for a 3D model. Results from these methods are well matched to each other. The inversion algorithm is validated by a synthetic example which has two anomalous bodies, one is more conductive but non-polarizable than the background, and the other is polarizable but has the same resistivity as the background. From the inverted section, we can cleary identify each anomalous body with different locations. Furthermore, in order to verify its efficiency to the real filed example, we apply the inversion algorithm to another three-layer model which includes phase anomaly in the second layer.

이 연구에서 복소 전기비저항을 이용한 2차원 IP 모델링 알고리듬과 이를 이용한 역산 알고리듬을 개발하였다. 복소 전기비저항을 이용한 IP 탐사기법은 크기인 전기비저항과 위상정보를 제공함으로써 지하의 수리지질학적인 특성 및 내부 공극수 종류 등 다양한 정보의 제공이 가능하여 활용성이 확대되고 있다. IP 탐사 모델링 및 역산 알고리듬은 기존의 전기비저항 모델링 및 역산 알고리듬을 복소 연산을 포함하도록 확장함으로써 개발되었다. IP 모델링은 유한요소법을 이용한 2.5차원 모델링 알고리듬을, 역산 알고리듬으로는 평활화 제한을 가한 감쇠 최소자승법을 이용하였다. 모델링의 검증에는 슐럼버저 배열에 대하여 3차원 층서모형에 수치필터링을 이용한 1차원 모델링 결과와 비교하였으며, 쌍극자 배열에 대하여 고립이상체 모형에 3차원 적분방정식 IP 모델링 알고리듬과 비교하여 그 타당성을 확인하였다. 역산의 타당성을 확인하기 위하여 전기비저항 및 위상 중 하나는 배경매질과 동일하고 다른 물성 하나만 차이를 가지는 모델에 대하여 역산 실험을 수행하였으며, 전기비저항 및 위상 이상체를 정확히 영상화하고 있음을 확인하였다. 역산의 실제 복잡한 지질모델에의 적용성을 확인하기 위해, 3차원 층서구조 내에 두 번째 층의 일부에 위상 이상체가 존재하는 모형을 설정하여 수치실험을 수행한 결과 전기비저항 단면에서는 이상체가 잘 확인되지 않으나, 위상 단면에서 그 이상체가 명확히 나타나는 것을 확인하였다.

Keywords

References

  1. 박권규, 1994, 유한요소법을 이용한 3차원 전기비저항 모델링 및 지형보정에 관한 연구, 공학석사 학위 논문, 서울대학교
  2. 오석훈, 1994, 유한요소법을 이용한 2차원 전기탐사의 지형보정, 교육학 석사 학위 논문, 서울대학교
  3. Borner, F. D., Gruhne, M., and Schon, J. H., 1993, Contamination indications derived from electrical properties in the soil and groundwater zone from induced polarization measurements, Geophysical Prospecting, 44, 583-601 https://doi.org/10.1111/j.1365-2478.1996.tb00167.x
  4. Borner, F. D., Schopper, J. R., and Weller, A., 1996, Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements, Geophysical Prospecting, 44, 583-601 https://doi.org/10.1111/j.1365-2478.1996.tb00167.x
  5. Dey, A., and Morrison., H. F., 1976, Resistivity modeling for arbitrarily shaped two-dimensional structures, Geophyscial Prospecting, 27, 106-136
  6. Dey, A., and Morrison., H. F., 1979, Resistivity modeling for arbitrarily shaped two-dimensional structures, Geophyscial Prospecting, 27, 106-136 https://doi.org/10.1111/j.1365-2478.1979.tb00961.x
  7. Fink, J. B., McAlister, E. O., Sternberg, B. K., Wieduwilt, W. G., and Ward, S. H., Eds., Induced polarization: Applications and case histories, Investigations in Geophysics No. 4 Soc. Expl. Geophys., 150-178
  8. Kemna, A., Binley, A., and Lee, S., 2004, Crosshole IP imaging for engineering and environmental applications, Geophysics, 69, 97-107 https://doi.org/10.1190/1.1649379
  9. Kemna, A., Binley, A., Ramirez, A., and Daily, W., 2000, Complex resistivity tomography for environmental applications, Chemical Engineering Journal, 77, 11-18 https://doi.org/10.1016/S1385-8947(99)00135-7
  10. Lesmes, D. P., and Frye, K. M., 2001, Influence of pore fluid chemistry on the complex conductivity and induced-polarization responses of Berea sandstone, Journal of Geophysical Research, 106, 4070-4090
  11. Marshall, D. J., and Madden, T. R., 1959, Induced polarization, a study of its causes, Geophysics, 59, 1327-1341 https://doi.org/10.1190/1.1443692
  12. Oldenburg, D. W., and Li, Y., 1994, Inversion of induced polarization data, Geophysics, 59, 1327-1341 https://doi.org/10.1190/1.1443692
  13. Olhoeft, G. R., 1985, Low-frequency electrical properties, Geophysics, 50, 2492-2503 https://doi.org/10.1190/1.1441880
  14. Pelton, W. H, Ward, S. H., Hallof, P. G., Sill, W. R., and Nelson, P. H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophysics, 43, 588-609 https://doi.org/10.1190/1.1440839
  15. Pridmore, D. F., Hohmann, G. W., Ward, S. H., and Sill, W. R., 1981, An investigation of finite element modeling for electrical and electromagnetic data in three-dimensions, Geophysics, 46, 1009-1024 https://doi.org/10.1190/1.1441239
  16. Schon, J. H., 1996, Physical properties of rocks-Fundamentals and principles of petrophysics, Elsevier Science Ltd
  17. Seigel, H. O., 1959, Mathematical formulation and type curves for induced polarization, Geophysics, 24, 547-565 https://doi.org/10.1190/1.1438625
  18. Vanhala, H., and Soininen, H., 1995, Laboratory technique for measurement of spectral induced polarization response of soil samples, Geophysical Prospecting, 43, 655-676 https://doi.org/10.1111/j.1365-2478.1995.tb00273.x
  19. Vinegar, H. J., and Waxman, M. H., 1984, Induced polarization of shaly sands, Geophysics, 49, 1267-1287 https://doi.org/10.1190/1.1441755
  20. Waxmann, M. H., and Smits, L. J. M., 1968, Electrical conductivities in oil-bearing shaly sands, Society of Petroleum Engineers Journal, 8, 107-122 https://doi.org/10.2118/1863-A
  21. Weller, A., Seichter, M., and Kampke, A., 1996, Inducedpolarization modeling using complex conductivities, Geophyical Journal International, 127, 387-398 https://doi.org/10.1111/j.1365-246X.1996.tb04728.x