• Title/Summary/Keyword: 속도 포텐셜

Search Result 143, Processing Time 0.031 seconds

A Potential-Based Panel Method for the Analysis of A Two-Dimensional Super-Cavitating Hydrofoil (양력판(揚力板) 이론(理論)에 의(依)한 2차원(次元) 수중익(水中翼)의 초월(超越) 공동(空洞) 문제(問題) 해석(解析))

  • Y.G. Kim;C.S. Lee;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.159-173
    • /
    • 1991
  • This paper describes a potential-based panel method formulated for the analysis of a super-cavitating two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring thats the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lilting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged. Characteristics of iteration and discretization of the present numerical method are much faster and more stable than the existing nonlinear theories. The theory shows good correlations with the existing theories and experimental results for the super-cavitating flow. In the region of small angles of attack, the present prediction shows and excellent comparison with the Geurst's linear theory. For the long cavity, the method recovers the trends of the Wu's nonlinear theory. In the intermediate regions of the short super-cavitation, the method compares very well with the experimental results of Parkin and also those of Silberman.

  • PDF

Influence of Water Stress through Root Pruning on Tree Growth and Fruit Quality in 'Fuji'/M.9 Apple Tree at Full Bloom (만개기 단근처리를 통한 수분스트레스가 '후지'/M.9 사과나무의 수체반응 및 과실특성에 미치는 영향)

  • Sagong, Dong-Hoon;Yoon, Tae-Myung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.264-273
    • /
    • 2016
  • This study was conducted to find out the influence of water stress from May to June on photosynthesis, shoot growth and fruit quality of apple trees. Fuji'/M.9 apple trees were root pruned at full bloom (30th April), parallel to the row of 30 cm or 60 cm from the trunk, to one side or both sides of trunk. The average value of afternoon leaf water potential from May to June of the no root pruning was maintained over -1.80 MPa, but that of root-pruning treatments was maintained under -1.80 MPa. In the comparison of average value of leaf water potential from May to June by root-pruning degree, the root pruning both sides at 30 cm from trunk was lowest (-2.06 MPa), followed by the root pruning both sides at 60 cm (-2.02 MPa) and the root pruning one side at 30 cm (-1.91 MPa). Root pruning one side at 30 cm or both sides at 60 cm reduced photosynthetic rate from May to June by 80% or 65%, respectively, compared with no root pruning. So, the degree of decreasing total shoot length or average fruit weight compare to the no root pruning of the root pruning one side at 30 cm was 25% or 11%, respectively, and those of the root pruning both sides at 30 cm was 45% or 15%, respectively. However, the soluble solid content and fruit color of the root pruning was higher than those of the no root pruning, and those of the root pruning both sides was higher than root pruning one side. These results indicate that the fruit enlargement was decreased when the average value of average leaf water potential from May to June was under -1.80 MPa, and the shoot growth was decreased when that was under -2.00 MPa.

Effects or air current speeds on the growth or eggplant plug seedlings in a wind tunnel under artificial lighting (인공광하의 풍동내에서 기류속도가 가지 플러그묘의 생장에 미치는 영향)

  • 김용현
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 1998
  • Air current speeds were controlled of 0.3, 0.5, 0.7 and 0.9 m.s$^{-1}$ to investigate the effects of air current speeds on the growth of eggplant plug seedlings (Solanum melongena L.) in a wind tunnel under artificial lighting. Growth of plug seedlings was influenced by the magnitude of air current speed and the traveling distance of regulated air flow. Stem length. ratio of length to diameter in stem, plant height .and number of leaves of plug seedlings decreased with the increasing air current speed and were significantly different at 5% level. Net photosynthetic rates of plug stand increased with the increasing air current speed and took a maximum value at the air current speed of 0.7~09 m.s$^{-1}$ . Stem diameter decreased and leaf area increased with the traveling distance of regulated air flow. Fresh weight and T/R ratio of dried weight were not influenced by the air current speed. Optimum control for microclimates inside the plug stand is needed to produce the uniform growth and high quality of plug seedlings in a semi-closed plant Production system under artificial lighting.

  • PDF

A Nonlinear Theory for Wave Resistance and Squat of a Slender Ship Advancing Near the Critical Speed in Restricted Water (제한수로에서 임계속도로 항진하는 선박의 조파저항, 침하 및 종경사에 대한 비선형 해석)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.3-13
    • /
    • 1989
  • In recent towing tank experiments, it has been observed that a ship moving near the critical speed $\sqrt{gh}$(g=gravitational acceleration, h=water depth) radiates solitons upstream in an almost periodic manner. As a ,consequence, the ship experiences considerable changes in resistance, trim and sinkage, or better known as squat. Mei and Choi(1987) developed a nonlinear theory for a slender ship by using the method of matched asymptotic expansions. For a certain class of channel width and ship slenderness, they found that the waves generated can be described by an inhomogeneous Korteweg-de Vries(KdV) equation. The leading-order solution properly predicts solitons propagating upstream, but it fails to render three-dimensional waves in the wake. In this paper a new approach has been made by choosing a different class of channel width and ship slenderness. The wave equation in the farfield turns out to be a homogeneous Kadomtsev-Petviashvili(KP) equation, which predicts solitons upstream and three-dimensional waves in the wake. Numerical results for the wave resistance, sinkage and trim reflect the experimentally identified phenomena.

  • PDF

PRECISE ORBIT PROPAGATION OF GEOSTATIONARY SATELLITE USING COWELL'S METHOD (코웰방법을 이용한 정지위성의 정밀궤도예측)

  • 윤재철;최규홍;김은규
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.136-141
    • /
    • 1997
  • To calculate the position and velocity of the artificial satellite precisely, one has to build a mathematical model concerning the perturbations by understanding and analysing the space environment correctly and then quantifying. Due to these space environment model, the total acceleration of the artificial satellite can be expressed as the 2nd order differential equation and we build an orbit propagation algorithm by integrating twice this equation by using the Cowell's method which gives the position and velocity of the artificial satellite at any given time. Perturbations important for the orbits of geostationary spacecraft are the Earth's gravitational potential, the gravitational influences of the sun and moon, and the solar radiation pressure. For precise orbit propagation in Cowell' method, 40 x 40 spherical harmonic coefficients can be applied and the JPL DE403 ephemeris files were used to generate the range from earth to sun and moon and 8th order Runge-Kutta single step method with variable step-size control is used to integrate the the orbit propagation equations.

  • PDF

Behavior of Oil-Water Interface between Tandem Fences (이중 유벽 사이의 기름과 물의 계면의 거동)

  • Kang Kwan Hyoung;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • The disturbance of oil-water interface confined between tandem fences caused by a sequence of traveling vortices below the interface is investigated. The traveling vortices are assumed to be those detached from the tip of the fore fence. The potential flow is assumed and the density interface is replaced as a sheet of vortex. The shape of the interface is predicted by tracing a finite number of marker particles placed at the interface. The velocity of the marker particles is determined by the Biot-Savart integral along the vortex sheet plus the contribution from the traveling point vortices. The rate of change of vortex-sheet strength is predicted by using an evolution equation for vorticity. The calculated results obtained for various conditions demonstrate that the large amplitude of interfacial wave following the moving vortek can be generated by the vortices.

  • PDF

Effect of High Concentrations of Sodium or Chloride Salts in Soil on the Growth of and Mineral Uptake by Tomatoes (토양에의 고농도 Na 및 Cl 염류가 토마토의 생육 및 무기성분 흡수에 미치는 영향)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.121-126
    • /
    • 2002
  • This study was conducted to investigate the effect of high concentration of sodium salts and chlorides in soil on the growth of tomato and the uptake of minerals. The growth inhibition rates of plant height and dry weight were different depending on salts, but they were not related to the electric conductivities (EC) and acidities (pH) in the soil solution. The orders of growth inhibition were Cl, SO$_4$, CO$_3$, PO$_4$>NO$_3$ in the sodium salts series, and Na, K, Mg, NH$_4$>Ca in the chlorides. The growth inhibition rates of the sodium salts series tended to be larger than those of the chloride series. Yield was lower 30%~10% in the sodium salt and chloride series than in the control. Chlorophyll content, photosynthetic rate and stomatal conductance were lower in the sodium salts and chloride series than in the control. Mineral concentration was lower in sodium salts and chlorides than in control. The nitrate absorption was inhibited in all salts except for NaNO$_3$ and NH$_4$Cl, and specially in NaCl and Na$_2$SO$_4$ treatments of the sodium salts and in KCl treatment of chloride series. K concentration was reduced NaCl and Na$_2$SO$_4$ treatments compared with the other salts. In the sodium salt series, calcium and magnesium concentration were decreased antagonistically when sodium concentration was increased.

비대칭 FinFET 낸드 플래시 메모리의 동작 특성

  • Yu, Ju-Tae;Kim, Dong-Hun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.450-450
    • /
    • 2013
  • 플래시 메모리는 소형화가 용이하고, 낮은 구동 전압과 빠른 속도의 소자 장점을 가지기 때문에 휴대용 전자기기에 많이 사용되고 있다. 현재 사용되고 있는 플로팅 게이트를 이용한 플래시 메모리 소자는 비례축소에 의해 발생하는 단 채널 효과, 펀치스루 효과 및 소자 간 커플링 현상과 같은 문제로 소자의 크기를 줄이는데 한계가 있다. 이 문제를 해결하기 위해 FinFET, nanowire FET, 3차원 수직 구조와 같은 구조를 가진 플래시 메모리에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 비례축소의 용이함과 낮은 누설 전류의 장점을 가진 FinFET 구조를 가진 낸드 플래시 메모리의 전기적 특성에 대해 조사하였다. 메모리의 집적도를 높이기 위하여 비대칭 FinFET 구조를 가진 더블 게이트 낸드 플래시 메모리 소자를 제안하였다. 비대칭 FinFET 구조는 더블 게이트를 가진 낸드 플래시에서 각 게이트 간 간섭을 막기 위해 FinFET 구조의 도핑과 위치가 비대칭으로 구성되어 있다. 3차원 TCAD 시뮬레이션툴인 Sentaurus를 사용하여 이 소자의 동작특성을 시뮬레이션하였다. 낸드 플래시 메모리 소자의 게이트 절연 층으로는 high-k 절연 물질을 사용하였고 터널링 산화층의 두께는 두 게이트의 비대칭 구조를 위해 다르게 하였다. 두 게이트의 비대칭 구조를 위해 각 fin은 다른 농도로 인으로 도핑하였다. 각 게이트에 구동전압을 인가하여 멀티비트 소자를 구현하였고 각 구동마다 전류-전압 특성과 전하밀도, 전자의 이동도와 전기적 포텐셜을 계산하였다. 기존의 같은 게이트 크기를 가진 플로팅 게이트 플래시 메모리 소자에 비해 전류-전압곡선에서 subthreshold swing 값이 현저히 줄어들고 동작 상태 전류의 크기가 늘어나며 채널에서의 전자의 밀도와 이동도가 증가하여 소자의 성능이 향상됨을 확인하였다. 또한 양족 게이트의 구조를 비대칭으로 구성하여 멀티비트를 구현하면서 게이트 간 간섭을 최소화하여 각 구동 동작마다 성능차이가 크지 않음을 확인하였다.

  • PDF

Resonant Frequencies in Rectangular Liquid Tanks with an Internal Body (내부물체를 갖는 사각형수조내 유체의 고유진동수)

  • 전영선;윤정방
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.55-64
    • /
    • 1996
  • Sloshing frequencies of the fluid in rectangular tanks with a bottom-mounted rectangular block are determined by linear water wave theory. Velocity potential is decomposed into those for the wall-induced waves, and the reflected, transmitted, and scattered waves by the block. The reflection and transmission coefficients are determined using the continuity conditions of mass flux and energy flux on the common vertical boundaries of the fluid regions, and the boundary conditions on the both sides of the block. The analysis results indicate that the sloshing frequencies reduce, as the block becomes tall and vade and as the block moves toward the center. The variations of the sloshing frequencies due to the block are found to be more sensitive in broad thanks than is tall tanks.

  • PDF

Added Mass of Regular Polygonal Cylinders with Fluid Gap (유체 의 틈 이 있는 정다각형 실린더 의 부가질량)

  • 김만회;김문언;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.56-63
    • /
    • 1985
  • Methods for evaluating the added masses of square and hexagonal structures with fluid gap are presented. For a sufficiently small fluid gap, an analytical expression for the added mass is found using the method of matched asymptotic expansion. Experimental data and numerical results using finite element method are also obtained for various sizes of fluid gap. It is shown that added masses increase in inverse proportion to the fluid gap as it becomes smaller. Experimental data, theoretical and numerical results are in good agreement.