• Title/Summary/Keyword: 소화능력

Search Result 179, Processing Time 0.081 seconds

Analysis of Fire Suppression Efficiency for Intermittent Water Spray Pattern by Fire Dynamics Simulator (FDS를 이용한 교번식 미분무방식의 소화 성능 분석)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.216-220
    • /
    • 2008
  • Water mist fire suppression system utilizes the fire suppression features such as cooling of fire source, dilution of ambient oxygen, and shielding of radiation heat with the evaporation of microscopic water droplets. The momentum of water mist is relatively lower than that of larger water droplet and the infiltration of water mist to the fire source is not effective. Contribution of evaporated water vapor is liable to decline to limited portion of fire source due to its light weight and sparse density. On the other hand, the cycling water mist pattern is expected to improve the penetration force of water mist as well as the air expelling capability with the stratified spray characteristics. At this paper, we present the analyzed fire suppression capability of intermittent water spray pattern by use of FDS which is computational fire dynamics fire model. We expect this analysis can support the basic concept to the development of the prototype of water mist nozzle.

섬유소분해효소유전자 (CelD)가 도입된 형질전환돼지의 섬유소 소화율 분석

  • 박진기;이연근;이현기;이풍연;최영진;김정호;김유경;김진회;장원경
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.61-61
    • /
    • 2002
  • 비 반추동물 특히 돼지의 경우 섬유소 소화율이 극히 낮은 것으로 알려져 있다. 따라서 본 연구는 섬유소분해효소유전자 (CelD) 를 췌장특이 프로모터인 rat Elastase Ⅰ 하류에 연결하여 구축된 벡터를 수정란내 미세주입한 후 생산된 형질전환 돼지를 이용하여 섬유소 소화능력을 측정하기 위하여 실시하였다. 먼저 35두의 수란돈으로 부터 65 두의 산자를 생산하였으며, PCR 분석 결과 4두가 형질전환돼지로 판명되었으며 이중 3두가 죽고, 생존한 l두를 다시 southern blot 분석결과 형질 전환된 것으로 판단하여 같은 복의 6두와 함께 섬유소 소화율을 측정하기 위하여 분리사육을 실시하였다. (중략)

  • PDF

He Study of Fire Suppression Capability of Low Pressure Water-Mist System for Wooden Cultural Properties (목조한옥에 대한 저압식 미분무 소화설비의 소화성능에 관한 연구)

  • Roh, Sam-Kew;Kim, Dong-Cheol;Ham Eun-Gu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2012
  • The study verified the extinguishing performance of the low pressure water-mist system, which is used to extinguish fire at domestic wooden architecture, through a fire test. Made of inflammable materials, a wooden house is vulnerable to fire, and the size of fire may vary from the early stage in case of arson. With the discharging pressure of 8 bar and the flow rate of 35 lpm, the low pressure water-mist nozzle used in the experiment has considerable discharging amount compared to other water-mist nozzles. The extinguishing performance was tested based on the size of fire and architecture. Test results demonstrated that the extinguishing performance was not affected by the size of a house, but decreased significantly when the size of fire was above unit 1. Taking into account that the environment of actual wooden cultural properties is more vulnerable than that of the experiment model, sufficient investigation on extinguishing performance is required to apply the water-mist extinguishing system to wooden architecture.

A Study of Analyzing performance of Portable Extinguisher of Medium Expansion Foam (휴대용 중발포 소화기 성능 분석 연구)

  • Kim, Sung-Soo;Kong, Il-Chean;Lee, Jang-Won;Kim, Jin-Su;Park, Il-Guy;Rie, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.105-108
    • /
    • 2012
  • 포소화약제는 물과 혼합시, 물의 표면장력을 저하시켜 공기와 혼합 교반을 통하여 거품을 발생시키는 약제로 소화에 이용되는 소화용수의 효율적 이용을 위하여 이용된다. 특히, 유류화재에 사용시 유면을 거품으로 덮어 질식소화에 적합한 특성을 가지고 있다. 포소화약제는 발포 방식에 따라 저발포, 중발포, 고발포로 나누어지는데 국내의 포소화약제 기준에는 저발포와 고발포의 2가지만을 규정하고 있어, 소화에 더욱 효과적이라 평가되는 중발포 소화기의 이용이 어렵다. 본 연구에서는 휴대용 중발포 소화기를 이용하여 발포실험과 소화실험을 실시하고, 저발포, 중발포, 고발포의 특성을 분석하였다. 결과로 3% 농도로 중발포 소화기 이용시 26.1배의 팽창률을 보였으며, 20단위 화재모형을 32초에 소화시킴으로써 중발포 소화기의 발포, 소화능력을 검증하였다.

  • PDF

Experiments of Water Mist System Application for Rack Storage (랙크식 창고에 대한 미분무 시스템 적용성 실험)

  • Myoung, Sang-Yup;Kim, Jong-Hoon
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.627-637
    • /
    • 2020
  • Purpose: This experimental study was conducted to find out whether a water-mist fire suppression system can be applied to C.E.P., a representative combustible material of a rack storage. Method: First, it was confirmed whether the water-mist fire-extinguishing system used in this experiment was capable of extinguishing oil fires. After that, the C.E.P. boxes were loaded in the same small space as used in the oil fire experiment, and then the experiment was conducted on three scenarios; door opening, door closing, and door closing and increasing the internal load. The scenario was set considering the opening and space size conditions, which are important factors for the water-mist fire suppression. Result: Oil fire suppression tests have shown that fires are well extinguished in both the door open and closed conditions. In case of a fire of C.E.P. boxes in the same space condition as an oil fire, the fire was not extinguished in the door open condition. Fires were extinguished in the case with the door closed condition, but the afterglow was confirmed. Conclusion: In the oil fire suppression test, a water-mist fire suppression system extinguished a fire in both the door open and closed conditions. However, for the C.E.P fire, it was possible to extinguish only under the door closed condition, and there was a possibility of re-ignition.

A Study on On-site Discharge Testing for Carbon Dioxide Fire Extinguishing Systems (이산화탄소 소화설비 현장 방출시험 방법론에 관한 고찰)

  • Park, Jun-Hyun;Kang, Tae-Seok;Kim, Jae-Hwan;Kim, Wee-Kyong
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.26-32
    • /
    • 2015
  • Carbon dioxide principally extinguishes fires by smothering, but an acceptable amount of extinguishing agent is needed. To assure the performance of carbon dioxide systems in Korea, computer programs certified by NEMA are being applied in system design. But the design errors can occur because the geometry of a model test facility is not the same as that of the actual fire area. Since the discharge rate tends to vary considerably with the flow pattern in a pipe, an on-site discharge test is necessary to ensure the performance of the system, especially with low pressure carbon dioxide. Technical standards for carbon dioxide systems do not give detailed guidelines for discharge tests at present. Based on comparative analysis of standards and practical tests, this paper suggests a methodology for on-site discharge tests.

A Study of Fire Extinguishment Characteristic for the Real Scale Deap-Seated Fire (실규모 심부화재 소화특성에 관한 연구)

  • Kim, Nam-Kyun;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Real scale fire tests was carried out for extinguishing performance evaluation of the wetting agent. The experiment was conducted in accordance with a Class A fire extinguishing test methods specified in the 'Type Approval of the Manual System Fire Extinguisher and Technical Standards of Test'. In addition, the subjects of this experiment were the wood flour and rice husk. Fire-fighting water, the three kinds of wetting agents used in the country and this study was used, was undertaken to determine a clear discrimination of the water and wetting agent. In the experimental results, it was confirmed that the internal temperature is maintained long time in the case of water. The internal temperature were rapidly lowered in the experiment of wetting agents. Therefore, the discrimination of extinguishing ability was confirmed by the temperature distribution in accordance with time. Based on the results of this experiment, this study is expected to be used as a underlying material on presenting a method of optimized performance evaluation of wetting extinguishing agent.

Wetting Agent Performance Evaluation Using Scale Model (축소모형 실험을 통한 침윤소화약제 소화성능 평가)

  • Kim, Nam-Kyun;Lim, Kyung-Bum;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.20-25
    • /
    • 2014
  • In this study, the extinguishing performance evaluation of wetting agent for wood crib was conducted by using a scale model equipment that we designed. To confirm the optimal conditions of the experiment, a test was changed amount of fire extinguishing water and the number of timber. As a result, the discrimination of the fire extinguishing performance was seen only when 20 pieces of wood and the extinguishing water of 100 mL were used. After evaluating the extinguishing performance of domestic and foreign wetting extinguishing agents under these conditions, a reignition was occurred in only when we used water. In addition, the discrimination of extinguishing performance was seen through the temperature distribution according to the time of watering. Based on the results of this experiment, this study is expected to be able to use as a basis on presenting a method of optimized performance evaluation of wetting extinguishing agent.

Application of Water Mist System for a Power Transformer Room - Fire Extinguishment(Part 1) (변압기실 화재에 대한 미분무수 소화시스템의 적용 - 소화특성을 중심으로(Part 1))

  • Han Yong-Shik;Choi Byung-Il;Kim Myung-Bae
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.32-36
    • /
    • 2005
  • A water mist system was considered as a possible alternative to a gaseous suppression system that can not prevent re-ignition after fire extinguishment for a power transformer room. This study deals with the fire suppression capability of the water mist systems. High-and low-pressure water mist systems were examined to compare efficiency of both systems. The power transformer examined in this study occupied about $7\%$ of a $10m\times10m\times$ transformer room. Full-scale suppression tests were performed for six different fire scenarios: two spray fires, three pool fires and one cascade fire. The fire suppression test results demonstrated that the high-pressure system was superior to the low-pressure system, especially considering oxygen depletion and the ambient temperature distribution.