• Title/Summary/Keyword: 소집단 논의

Search Result 81, Processing Time 0.031 seconds

Development of Scientific Conceptual Understanding through Process-Centered Assessment that Visualizes the Process of Scientific Argumentation (과학적 논의 과정을 시각화한 과정중심평가에서의 과학적 개념 이해 발달)

  • Kim, Misook;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.5
    • /
    • pp.637-654
    • /
    • 2019
  • The purpose of this study is to investigate the development of scientific conceptual understanding through a process-centered assessment that visualizes the process of scientific argumentation. In this study, 353 high school students and five teachers participated in the scientific argumentation. As a result of analyzing students' utterances on the elements of argumentation, scientific concepts in intragroup were embodied through query and clarification of meaning, and organized through agreement and rebuttal. In intergroup argumentation, scientific concepts were elaborated through query, clarification of meaning, and change of claim. Teachers were able to understand the process of argumentation through small-group activity sheets where the process was visualized, thereby providing feedback and improving the class. Based on the results, the scientific argumentation of visualizing the process was found not only to allow students to perform self-assessment and peer-assessment but also to help teachers understand the argumentation process. The findings of this study guide process-centered assessment in the science curriculum and are expected to contribute to the promotion of scientific argumentation in classrooms.

The Effect of Performing Leader's Role on Academic Achievement and Satisfaction in Small Group Collaborative Learning in Virtual Reality (가상현실을 활용한 소집단 협력학습에서 팀 구성원으로서의 역할 수행이 학업성취도와 만족도에 미치는 영향)

  • Kim, Mi Hwa
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.67-76
    • /
    • 2017
  • To conduct research using small group learning with advanced technology in school, small group collaborative learning was conducted in virtual reality called Second Life for high school history class to verify the effects of the role of group members (leader, group member) in collaborative learning activities in this study. Two classes of the second grade of high school were selected randomly and 20 groups were also randomly assigned, and each group was consisted of three members (1 leader and two group members). Academic achievement and satisfaction with academic activities were used to verify the effect of the role as measurement tools, and collected quantitative data were tested by independent sample t. As a result, it was found that performing the role of leader in collaborative learning activities in virtual reality was effective in promoting enhancing students' academic achievement and increasing satisfaction level. Lastly, utilization and improvement of small group collaborative learning using virtual reality in the field of education were discussed.

An Analysis of Communication Means in the Elementary Mathematical Small Group Cooperative Learning (초등학교 수학과 소집단 협동학습에 나타나는 의사소통의 수단 분석)

  • Kong, Hee-Jung;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.9 no.2
    • /
    • pp.181-200
    • /
    • 2005
  • The purpose of this thesis was to analyze communicational means of mathematical communication in perspective of languages and behaviors. Research questions were as follows; First, how are the characteristics of mathematical languages in communicating process of mathematical small group learning? Second, how are the characteristics of behaviors in communicating process of mathematical small group learning? The analyses of students' mathematical language were as follows; First, the ordinary language that students used was the demonstrative pronoun in general, mainly substituted for mathematical language. Second, students depended on verbal language rather than mathematical representation in case of mathematical communication. Third, quasi-mathematical language was mainly transformed in upper grade level than lower grade, and it was shown prominently in shape and measurement domain. Fourth, In mathematical communication, high level students used mathematical language more widely and initiatively than mid/low level students. Fifth, mathematical language use was very helpful and interactive regardless of the student's level. In addition, the analyses of students' behavior facts were as follows; First, students' behaviors for problem-solving were shown in the order of reading, understanding, planning, implementing, analyzing and verifying. While trials and errors, verifying is almost omitted. Second, in mathematical communication, while the flow of high/middle level students' behaviors was systematic and process-directed, that of low level students' behaviors was unconnected and product-directed.

  • PDF

Exploring the Role of Collaborative Reflection in Small Group Argumentation: Focus on Students' Epistemic Considerations and Practices (소집단 논변 활동에서 협력적 성찰의 역할 탐색 -학생들의 인식적 고려와 실행을 중심으로-)

  • Cho, Hanbit;Ha, Heesoo;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study aims to explore students' epistemic practices and considerations, which are explained as underlying epistemic thoughts that guide their epistemic practices, during argumentation in science classrooms. We also investigated how collaborative reflection facilitated the development of such epistemic considerations. Two seventh-grade classes participated in this study by engaging in argumentation activities and collaborative reflection after classes. A group with students' change in epistemic aspects and the influence of collaborative reflection clearly revealed from their practices was chosen as a focus group. We recorded their class discussions and collaborative reflections with the researchers. Transcriptions of the recordings and checklists we collected during the collaborative reflections were used for analysis. Results showed evident changes in the students' epistemic considerations and practices and four factors facilitating such developments were identified. First, the researcher facilitating the students to recognize each other as collaborators during collaborative reflection led development of epistemic considerations on "audience using the knowledge products." Second, the collaborative reflection facilitated construction of context for peer interactions where the students encouraged each other to participate in the discussion, resulting in the development of other students' epistemic considerations on "justifications in knowledge products." Third, the items provided on the checklists explicitly delineated expectations on their practices in argumentation, also facilitating development of epistemic considerations. Lastly, the students' imitation of the researcher's pattern of discourse facilitated construction of causal explanation and development of epistemic considerations on "nature of the knowledge products." This study will contribute to the construction of strategies that develop students' epistemic considerations and productive epistemic practices in argumentation.

Analysis on the Relationship Between the Construct Level of Analogical Reasoning and the Construction of Explanatory Model Observed in Small Group Discussions on Scientific Problem Solving (과학적 문제해결을 위한 소집단 논의 과정에서 나타난 비유적 추론의 생성 수준과 설명적 모델 생성의 관계 분석)

  • Ko, Minseok;Yang, Ilho
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.2
    • /
    • pp.522-537
    • /
    • 2013
  • This study analyzed the relationship among the construct level of analogical reasoning, prediction and uncertainty, and the construction of an explanatory model that were produced during small group discussions for scientific problem solving. This study was participated in by 8 students of K University divided into 2 teams conducting scientific problem solving. The participants took part in discussions in groups after achieving scientific problem solving individually. Through individual interviews afterwards, changes in their thinking through discussion activities were looked into. The results are as follows: The analogy at the Entities/Attributes level was used to make people clearly understand the characteristics of certain objects or entities in the discussions. The analogy at the Configuration/Motion level that was produced during the discussions ensured other participants to predict the results of problem solving. The analogy at the Mechanism/Causation level changed the structure of problem situations either to help other participants to reconstruct the explanatory model or to come up with a new situation that was never been through before to justify the created mechanism and through this, the case of creating Thought Experiments during the discussions were observed. if looking into the changes of analogies, each individual's analogic paradigm during the discussions were shown as production paradigm, reception-production paradigm, production-reception paradigm, and reception paradigm. The construction and reconstruction of the explanatory model were shown in analogic production paradigm, and in the reception paradigm of an analogy, participants changed their predictions or their certainty.

Exploring Responsive Teaching's Effect on Students' Epistemological Framing in Small Group Argumentation (소집단 논변 활동에서 반응적 교수법이 학생들의 인식론적 프레이밍에 미치는 영향 탐색)

  • Ha, Heesoo;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.63-75
    • /
    • 2017
  • The purpose of this study is to explore the effect of responsive teaching on students' productive argumentation practice. The participating students predicted the results of an activity to measure in which location on the body (the head, spine, or back of the hand) they would feel a cellphone's vibrations faster. They then engaged in the activity and built an argument to justify it. We interviewed the teacher to understand her thoughts regarding what was expected in the class. We also recorded and transcribed the class and the interview, for use in the analysis of the students' epistemological framing and the teacher's responsive practice in small group argumentation. We discovered that the teacher intervened in the groups with questions that elicited students' thoughts as starting points for her responsive practice. Her eliciting questions led the students to talk about their ideas, supporting their engagement in the argumentation. The teacher's understanding of the argumentation lesson and her behavior to understand the students' ideas reflected her productive framing, which led her to elicit students' ideas and to support their active interaction during the small-group argumentation. She presented rebuttals against students' ideas, engaging in the argumentation as another participant, not as an evaluator. This supported the equality of intellectual authority in the group and showed students how to engage in the argumentation, supporting students' productive framing. As a result of these responsive teaching practices, the students shifted their epistemological framing, resulting in productive argumentation practice. The results of this study will contribute to developing teachers' responsive teaching strategies to support students' productive framing in science classrooms.

The Characteristics of Group and Classroom Discussions in Socioscientific Issues Classes (과학관련 사회쟁점(SSI) 수업의 소집단 토론과 전체 학급 토론에서 나타나는 특징)

  • Kim, Minhwan;Nam, Hyein;Kim, Sunghoon;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.135-145
    • /
    • 2018
  • In this study, we investigated the argumentations of group and classroom discussions in socioscientific issues (SSI) discussion classes. Twenty-seven high school students participated in the SSI discussion classes on nuclear power generation. We observed and recorded the classes and also conducted semi-structured interviews. For the analyses, we revised a previous framework that was developed to analyze dialogic argumentations in the context of SSI. The analyses of the results indicated that there were more discourse schemes in the classroom discussions than the group discussions which are related to awareness and openness to multiple perspectives, evidence based reasoning, and on-going inquiry and skepticism. And there were few discourse schemes related to moral and ethical sensitivity in the group and classroom discussions. Various grounds, data, and information were presented in the classroom discussions. Students concentrated on carrying their claims and were not able to sympathize with and accept other opinions. Therefore, there were few discourse schemes to reach consensus. In addition, they perceived classroom discussions as competitive and actively rebutted other claims or grounds. The levels of argumentation were also high in the classroom discussions. The group discussions were held in relaxed atmosphere, and they asked the opponents more for clarification or additional information and evidences. However, classroom discussions were held in serious atmosphere, and they actively queried the validity of the claims or grounds. Based on the results, some suggestions to implement SSI discussion classes were discussed.

An Exploration of Learning Environment for Promoting Conceptual Understanding, Immersion and Situational Interest in Small Group Learning Using Augmented Reality (증강현실을 활용한 소집단 학습에서 개념 이해 및 몰입, 상황 흥미를 촉진할 수 있는 학습 환경 탐색)

  • Shin, Seokjin;Noh, Taehee;Lee, Jaewon
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.360-370
    • /
    • 2020
  • This study explored the learning environment for promoting conceptual understanding, immersion, and situational interest in small group learning using augmented reality, according to the level of students' self-regulation. 95 ninth-grade students from a coed high school in Seoul participated in this study. Students were divided into a group of four and each group was randomly assigned to three learning environments that provide one marker and one smart device(1-1), two markers and two smart devices(2-2), and four markers and four smart devices(4-4) for a group. Small group learning using augmented reality was conducted for two class periods about the chemical bonding concept from the Integrated Science subject. Two-way ANOVA results revealed that students in the 4-4 learning environment scored significantly higher than those in the 1-1 or 2-2 learning environment in a conception test. Changes in the learning environment have affected students with a low level of self-regulation. In an immersion test, students in the 4-4 learning environment scored significantly higher than those in the 1-1 learning environment, and changes in the learning environment have affected students with a high level of self-regulation. As a result of situational interest test, students in the 4-4 and 2-2 learning environments scored significantly higher than those in the 1-1 learning environment, and changes in the learning environment have affected students with a low and a high level of self-regulation. Based on the results, the educational implications of the learning environment for promoting conceptual understanding, immersion, and situational interest in small group learning using augmented reality are discussed.