• Title/Summary/Keyword: 소음 방향

Search Result 487, Processing Time 0.03 seconds

Flapwise Bending Vibration Analysis of Rotating Cross-ply Composite Beams (전단 및 단면 관성효과를 고려한 Cross-ply 복합재 회전 외팔보의 면외방향 굽힘 진동해석)

  • 이승현;신상하;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.994-999
    • /
    • 2003
  • A modeling method for the modal analysis of a rotating cross-ply composite beam based on Timoshenko beam theory is presented. To analyze the composite beam exactly, the effects of shear deformation and rotary inertia are included. Linear differential equations of motion are derived using the assumed mode method. For the modeling, hybrid deformation variables are employed and approximated to derive the equations of motion. The effects of the dimensionless angular velocity and the slenderness ratio parameter on the variations of modal characteristics are investigated

  • PDF

Vibration Analysis of Rotating Inward Cantilever Beams With a Tip-Mass (집중질량을 갖는 회전중심방향 자유단 외팔보의 진동해석)

  • Lee, Gun Ho;Yoo, Hong Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.389-391
    • /
    • 2014
  • The Vibration Analysis of Rotating Inward Beams Considering The Tip-Mass is presented based on Euler-Bernoulli beam theory. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of angular speed, and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.

  • PDF

In-plane Vibration Analysis for an Axially Moving Membrane (축방향으로 움직이는 박막의 면내 진동해석)

  • 정진태;신창호;김원석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.221-227
    • /
    • 2002
  • The longitudinal and lateral in-plane vibrations of an axially moving membrane are investigated when the membrane has translating acceleration. By extended Hamilton's principle, the governing equations are derived. The equations of motion for the in-plane vibrations are linear and coupled. These equations are discretized by using the Galerkin approximation method after they are transformed into the variational equations, j.e., the weak forms so that the admissible functions can be used for the bases of the in-plane deflections. With the discretized equations for the in-plane vibrations, the natural frequencies and the time histories of the deflections are obtained.

Modal Vibration Characteristics of an Annular Disk Containing Evenly Spaced Narrow Radial Slots (등간격의 좁은 반경방향 슬롯을 가진 환형 박판의 고유진동 특성)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.560-568
    • /
    • 2009
  • Modal vibration characteristics of a thin annular disk containing narrow radial slots are studied numerically and experimentally. Existing analytical solution is examined based on these results revealing that it can not precisely predict eigenvalues of the disk with slots since it does not accurately consider change in the vibration modes and change in strain energy density distributions due to the slots. Parametric study on slot length found that distortions in the mode shape as well as changes in the corresponding natural frequencies are proportional to the slot length. Consequently, errors in the calculated eigenvalues are also proportional to the slot length and accurate data can not be obtained with existing analytical solution above a certain level of slot length. Same phenomena can be observed in both free-free disk and fixed-free disk.

Evaluation of Analytical Vibration Characteristics for Triple Cylindrical Shells Filled with Fluid (유체로 채워진 삼중 원통셸의 해석적 진동 특성 평가)

  • 지용관;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.150-160
    • /
    • 2002
  • The free vibration characteristics of the triple cylindrical shells filled with fluid are investigated. The triple cylindrical shells are filled with compressible fluid. The boundary condition is clamped at both ends. Analytical method is developed to evaluate natural frequencies of triple cylindrical shells using Sanders' shell theory and courier series expansion by Stokes' transformation. Their results are compared with those of finite element method to verify the validation of the method developed. The modal characteristics of shells filled with fluid at region 1, 2 and 3 are evaluated.

Nonlinear Dynamic Modeling and Stability Analysis of an Axially Oscillating Cantilever Beam With a Concentrated Mass (축방향 왕복운동을 하는 집중질량을 가진 외팔보의 비선형 동적 모델링 및 안정성 해석)

  • 홍정환;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.477-482
    • /
    • 2003
  • A nonlinear modeling method for an axially oscillating cantilever beam with a concentrated mass is presented in this paper. Hybrid deformation variables are employed fur the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. The geometric nonlinear effects of stretching and curvature are considered to accurately predict the frequency response characteristics of the oscillating cantilever beam. The effects of the magnitude and the location on the concentrated mass on the frequency characteristics are investigated. It is found that the dynamic instability is significantly influenced by the two parameters.

  • PDF

A Study on the method for the extraction of the radiation efficiency and radiation direction coefficient (방사효율과 방사방향 계수 산출기법 연구)

  • Jung, Woo-Jin;Kang, Myung-hwan;Lee, Jong-Ju;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.738-743
    • /
    • 2013
  • Underwater radiated noise is the key in acoustic stealth performance of modern naval ships. The underwater radiated noise predicted by the hull vibration with radiation efficiency cannot give the information of radiation pattern which is essential to the analysis of detection possibility by enemy and to improve the operational performance of the naval ship. The radiation pattern of underwater radiated noise is able to be obtained with radiation efficiency and radiation direction coefficient. In this paper, a new method to extraction the radiation efficiency and radiation direction coefficient is suggested and proved with the simulation and experiment by using cylindrical shell of 70cm diameter in air.

  • PDF

An Axial-type Self-bearing Motor for Small Vertical Axial-flow Pump (소형 수직형 축류 펌프를 위한 축방향 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.223-232
    • /
    • 2001
  • Aiming at a small axial pump with a levitated rotor, an axial-type self-bearing motor is presented, which has a rotor wish four permanent magnets and two stators with two-pole three-phase windings. In this system, only the axial motion of rotor is actively controlled by two opposite self-bearing motors just like in the case of an axial magnetic bearing, while the other motions are passively stable. For rotation, It follows the theory of a four-pole three-phase synchronous motor. This paper Introduces schemes for design and control of the self-bearing motor and shows some experimental results to Prove the feasibility of application for the axial Pump.

  • PDF

Tuning of Micromachined Gyroscope by the Axial Loads (축방향 하중을 이용한 마이크로 자이로스코프의 고유진동수 조율)

  • Cho, Choong-Hyoun;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.88-91
    • /
    • 2005
  • Although the MEMS element is made through a very precise manufacturing process, usually there is the difference between the modeling design and the actual product. So tuning is required. Through the frequency tuning(changing the characteristics of device), we can calibrate the fabrication error and uncertainty. I'll propose the method of changing the natural frequency through the imposing the axial force on the anchor part to separate the sensing part and the tuning part. When the shape of section is the form of rectangular, the degree of the natural frequencies' change under axial force appears D be different. Applying a tuning force of 30 $\mu$N, the natural frequencies' difference can be reduced by 5 percent.

  • PDF

Modeling and Verification for Stability Analysis of Axially Oscillating Cantilever Beams (축 방향 왕복운동을 하는 외팔보의 안정성 해석을 위한 모델링 및 검증)

  • Kim, Sung-Do;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.708-713
    • /
    • 2005
  • Modeling and verification for stability analysis of axially oscillating cantilever beams are investigated in this paper. Equations of motion for the axially oscillating beams are derived and transformed into dimensionless forms. The equations include harmonically oscillating parameters which are related to the motion-induced stiffness variation. Stability diagram is obtained by using the multiple scale perturbation method. To verify the accuracy of the modeling method, several points in the plane of the stability diagram are presented and solved. The present modeling method proves to be as accurate as a nonlinear finite element modeling method.

  • PDF