• Title/Summary/Keyword: 셸

Search Result 177, Processing Time 0.025 seconds

Vulnerability Analysis and Demonstration of FTP and Telnet Access in Drone Environment: Based on Product A (드론 환경에서의 FTP 및 텔넷 접속 취약점 분석 및 실증: A 드론을 대상으로)

  • Gyeongseok Oh;Jaehyuk Lee;Kyungroul Lee;Wonbin Jeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.197-198
    • /
    • 2023
  • 드론 기술이 발전함에 따라, 최근에는 재난 구조 및 교통 관측, 과학 연구와 같은 분야에서 드론이 활용됨으로써, 사회적 및 산업적 발전에 일조하는 실정이다. 그러나 드론의 사용률이 증가하는 상황에서, 다양한 취약점을 내포한 드론으로 인하여, 심각한 보안위협이 발생하는 문제점이 존재한다. 이에 따라, 드론에서 발생하는 보안위협에 대응하기 위한 연구가 요구되며, 본 논문은 대응방안을 도출하기 위한 목적으로, 드론에서 발생 가능한 신규 취약점을 분석하고 실증한다. 본 논문에서 발굴한 신규 취약점은 A 드론을 대상으로, 기존의 다중 접속 취약점을 악용한 FTP 및 TELNET 접속 취약점이며, FTP 접속으로 암호화된 파일에 접근이 가능하고 TELNET 접속으로 루트 권한의 셸을 실행하는 신규 취약점을 발굴하였다.

  • PDF

Modal Analysis of the Bell Type Shell with Thickness and Asymmetric Effects (鐘形셀의 두께變化 및 非對稱效果에 따른 振動모우드 解析에 관한 硏究)

  • 정석주;공창덕;염영하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.383-391
    • /
    • 1986
  • Mode shapes and natural frequencies of the bell type shell are analyzed numerically by the finite element method. The impulse hammer method and the Fast Fourier Transform analyzer are used for the experimental test. All types of mode shapes are expressed by the computer graphics. Numerical solutions are good agreement with the experimental results. The sustaining sound of the typical bell-type shell depend upon the first flexural mode (0-2 mode) and the second flexural mode (0-3 mode), and their mode shapes are independent upon thickness Dangjwas, holes, and added mass effects. Asymmetric effects by Dangjwas, holes and added mass give rise to beat frequencies, and the added mass is found to be most effective.

Development of a Bellows Finite Element for the Analysis of Piping System (배관시스템 해석을 위한 벨로우즈 유한요소의 개발)

  • 고병갑;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1439-1450
    • /
    • 1995
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. The aim of this study is to develop a bellows finite element, which similarly includes more complex shell type deformation patterns. This element also does not require flexibility or stress factors, but evaluates more detailed deformation and stress patterns. The proposed bellows element is a 3-D, 2-noded line element, with three degrees of freedom per node and no bending. It is formulated by including additional 'internal' degrees of freedom to account for the deformation of the bellows corrugation; specifically a quarter toroidal section of the bellows, loaded by axial force, is considered and the shell type deformation of this is include by way of an approximating trigonometric series. The stiffness of each half bellows section may be found by minimising the potential energy of the section for a chosen deformation shape function. An experiment on the flexibility is performed to verify the reliability for bellows finite element.

Interactions of Spherical Acoustic Shock Waves with a Spherical Elastic Shell near a Free-Surface (자유표면 근처에서의 구형 셸과 충격파의 비정상 유체-구조물 상호작용 해석)

  • Lee, Min-Hyung;Lee, Beom-Heon;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1143-1148
    • /
    • 2002
  • This paper analyses the transient response of a spherical elastic shell located near fee surface and impinged by spherical step-exponential acoustic shock waves. The problem is solved through extension of a method (Huang, 1969) previously formulated for the excitation in an infinite domain, which employs the classical separation of variables, series solutions, and Laplace transform technique The effect of the free surface reflection is taken into account using the image source method. The reflection of the incident wave has been treated by the same image formulation. If the reflection of the pressure field scattered and radiated by the shell is considered, the problem becomes that of multiple scattering by two spheres. However, this is in general negligible considering errors inherent from other sources and that the scattered and radiated pressure waves emanating from the shell are small. Thus, the problem is reduced to that of a structure immersed in an infinite fluid and impinged upon the origin and the image incident.

Vibration Analysis of Conical Shells with Annular Plates Using Transfer of Influence Coefficient (영향계수의 전달에 의한 환원판이 결합된 원추형 셸의 진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.52-59
    • /
    • 2015
  • This paper is presented for the free vibration of a conical shell with annular plates or circular plate using the transfer of influence coefficient. The governing equations of vibration of a conical shell, including annular plate, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-annular plates. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of finite element method, transfer matrix method and ANSYS. The conclusion show that the present method can accurately obtain natural vibration characteristics of the conical shell with annular or circle end plates.

Structural Analysis of Axisymmetric Conical Shells Using Finite Element-Transfer Stiffness Coefficient Method (유한요소-전달강성계수법을 이용한 축대칭 원추형 셸의 구조해석)

  • Choi, Myung-Soo;Byun, Jung-Hwan;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • Various finite elements have been studied and developed to analyze a variety of structures in the finite element method(FEM). The transfer stiffness coefficient method(TSCM) is an effective algorithm for structural analysis but the structures which can be applied were limited. In this paper, a computational algorithm for the structural analysis of axisymmetric conical shells under axisymmetric loading is formulated using the finite element-transfer stiffness coefficient method(FE-TSCM). The basic concept of FE-TSCM is the combination of the modeling technique of FEM and the transfer technique of TSCM. The FE-TSCM has all the advantages of both FEM and TSCM. After carrying out the structural analysis of axisymmetric conical shells using FEM, FE-TSCM, and analytical method we compare the computational results of FE-TSCM with those of the other methods in terms of computational accuracy.

Vibration Characteristic Study of Arc Type Shell Using Active Constrained Layer Damping (능동 구속감쇠층을 이용한 아크형태 셸 모델에 대한 진동특성 연구)

  • 고성현;박현철;황운봉;박철휴
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2004
  • The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).

Finite Element Analysis on Buckling Pressure of Composite Pressure Hull (복합재 내압선체의 좌굴압력에 관한 유한요소해석)

  • Cho, J.R.;Jung, H.Y.;Kwon, J.H.;Choi, J.H.;Cho, Y.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.212-213
    • /
    • 2005
  • The results of an experimental and analytical study of composite pressure hull on buckling pressure are presented for URN 300. We predicted the buckling and post buckling analysis of composite laminated cylindrical shell and panel under external compression by using ABAQUS/Standard[Ver 6.4]. To obtain nonlinear static equilibrium solutions for unstable problems, where the load-displacement response can exhibit the type of nonlinear buckling behavior, during periods of the response, the load and/or the displacement may decrease as the solution evolves, used the modified Riks method. Experiments were conducted to verify the validation of present analysis for cross-ply laminated shells. The shells considered in the study have four different lamination patterns, [${\pm}{\Theta}$/0/90]$_{14s}$,[${\pm}{\Theta}_{14}$/$0_{14}$/$90_{14}$],[${\pm}$45/0/90]$_{18s}$ and [/0/90]$_{18s}$. At the result of this study, the optimized ply orientation angle is $75^{\circ}$. The critical load from experiment is 69% of that of numerical analysis, because the fracture of matrix was generated before buckling. So URN 300 is not proper to use at the condition under high external pressure.

  • PDF

Vibration Analysis of Laminated Composite Corrugated Plates (적층 복합재료 주름판의 진동해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.347-352
    • /
    • 2016
  • This work presents the free vibration characteristics of laminated composite corrugated rectangular plates using the analytical method. Because it is very difficult to determine its mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated structures. The corrugated element can be homogenized as an orthotropic material. Both the effective extensional and flexural stiffness of this homogenized equivalent orthotropic material are considered in the analysis. The present analytical results are validated by those obtained from 3D finite element analysis based on shell elements. The natural frequencies and global vibration mode shapes obtained from present analytical and finite element analysis are presented. Some numerical results are presented to check the effect of the geometric properties.

Optimum Welding Position between Shell and Cylinder based on SEA (SEA를 이용한 셸과 실린더의 최적 용접 조건)

  • 이장우;양보석;안병하
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.370-376
    • /
    • 2004
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it ispossible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure