• Title/Summary/Keyword: 성형 하중

Search Result 241, Processing Time 0.031 seconds

A Study on the Forming Conditions of a Forging Piston by using the Finite Element Simulation and the Taguchi Method (유한요소해석과 다구찌방법을 이용한 단조피스톤의 성형조건 연구)

  • You, Ho-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1990-1995
    • /
    • 2012
  • This paper presents design methodology to determine the design parameters that affect the manufacture of aluminum forging piston using the FE simulation and the Taguchi method. Maximum forging load is used as the objective function, and preform, material temperature and draft angle are selected as the design parameters. Their combinations are implemented by orthogonal array, and forging load is evaluated through the simulation. From the analytic results of design parameters to minimize the load using signal to noise ratio, their optimal combinations are proposed. The proposed design methodology will be able to help in selecting proper preform among preforms and to be used in determining the optimal combination of the parameters in metal forming process.

Forming Analysis of L-type Bending of Sandwich Sheet with Pyramid Core (피라미드 코어를 가진 샌드위치 판재의 L형 굽힘 성형해석)

  • Lim, Sung-Jin;Chung, Wan-Jin;Kim, Jong-Ho
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.378-383
    • /
    • 2009
  • In this study, the use of a condensed model is proposed for the simulation of forming of sandwich sheet with pyramid core. A corresponding finite element analysis for L-type bending is carried out to prove the accuracy and the effectiveness. In order to improve the accuracy of forming analysis, more precise modeling of core shape and consideration of work-hardening of previous core forming are carried out. Simulation results are compared with those of experiment. Deformation shape and post-buckling behavior by simulation are in good agreement with those of experiment for the considerable range of deformation. From the comparison of force-displacement curve, it is shown that the proposed model shows good prediction of post-buckling behavior.

A Preliminary Study on the Optimal Shape Design of the Axisymmetric Forging Component Using Equivalent Static Loads (등가정하중을 이용한 축대칭 단조품의 형상최적화에 관한 기초연구)

  • Jung, Ui-Jin;Lee, Jae-Jun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • An optimization method is proposed for preform and billet shape designs in the forging process by using the Equivalent Static Loads (ESLs). The preform shape is an important factor in the forging process because the quality of the final forging is significantly influenced by it. The ESLSO is used to determine the shape of the preform. In the ESLSO, nonlinear dynamic loads are transformed to the ESLs and linear response optimization is performed using the ESLs. The design is updated in linear response optimization and nonlinear analysis is performed with the updated design. The examples in this paper show that optimization using the ESLs is useful and the design results are satisfactory. Consequently, the optimal preform and billet shapes which produce the desired final shape have been obtained. Nonlinear analysis and linear response optimization of the forging process are performed using the commercial software LS-DYNA and NASTRAN, respectively.

마름모꼴 다이에 의한 사각빌렛 밀폐형단조의 힘평형 해석

  • 최재찬;김병민;김진무;이진희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.43-48
    • /
    • 1991
  • 최근 항공기 및 자동차 관련산업 등의 급속한 발전에 따라 정밀도가 높고 결함이 없는 제품을 단기간에 생산하기 위한 금속성형공정의 가공법 및 해석 방법에 대한 연구가 활발하다. 금속성형공정에서의 주된 공학적 관심사는 원하는 형상의 제품을 내부결함없이 생산하기 위한 성형하중과 금속유동의 예측 및 응력분포 등이다. 그러나 해석적인 방법으로 실제 금속성형문제에 대한 완전해를 얻는 것은 매우 어려우므로 실제해에 근접한 근사해를 구한다.(중략)

  • PDF

Forming of Dome and Inlet Parts of a High Pressure CNG Vessel by the Hot Spinning Process (열간 스피닝 공정을 통한 CNG 고압용기의 돔 및 입구 부 성형)

  • Lee, Kwang O;Park, Gun Young;Kwak, Hyo Seo;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.887-894
    • /
    • 2016
  • The CNG pressure vessel is manufactured by a deep drawing and ironing (D.D.I) process for forming cylinder parts, followed by a spinning process for formation of the dome part. However, studies on the buckling phenomenon of the dome part and formation of the inlet part have not been performed yet, and the CNG pressure vessel is produced by the experience of the field engineers and the trial and error method. In this study, buckling phenomenon during the spinning process was predicted by comparing critical buckling loads obtained through theoretical analysis with axial loads from the FEA, and a method for preventing buckling of the dome part was proposed by employing commercial software (Forge NxT 1.0.2). Also, to form the inlet part, forming loads of the roller at contact point between the roller and the dome part were analyzed according to radii of the dome part, and the inlet part was formed by controlling the radius of the dome part.

A Study on the Fracture Behavior of Composite Laminated T-Joints Using AE (AE를 이용한 복합재료 T 조인트부의 파괴거동에 관한 연구)

  • Kim, J.H.;Ahn, B.W.;Sa, J.W.;Park, B.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.277-287
    • /
    • 1999
  • Quasi-static tests such as monotonic tension and loading/unloading tension were performed to investigate the bond characteristics and the failure processes for the T-joint specimens made from fiber/epoxy composite material. Two types of specimens, each consists of two components, e. g. skin and frame. were manufactured by co-curing and secondary bonding. During the monotonic tension test, AE instrument was used to predict AE signal at the initial and middle stage of the damage propagation. The damage initiation and progression were monitored optically using m (Charge Coupled Device) camera. And the internal crack front profile was examined using ultrasonic C-scan. The results indicate that the loads representing the abrupt increase of the AE signal are within the error range of 5 percent comparing to the loads shown in the load-time curve. Also it is shown that the initiation of crack occurred in the noodle region for both co-cured and secondarily bonded specimen. The final failure occurred in the noodle region for the co-cured specimen. but at the skin/frame termination point for the secondarily bonded specimen. Based on the results, it was found that two kinds of specimen show different failure modes depending on the manufacturing methods.

  • PDF

A Study on the Flow Behaviors of the Multi-Pass Ironing Process by the Finite Element Method (유한 요소법을 이용한 다단식 아이어닝 공정의 유동특성에관한 연구)

  • 양동열;이성근;이경훈
    • The Korean Journal of Rheology
    • /
    • v.1 no.1
    • /
    • pp.36-45
    • /
    • 1989
  • 아이어닝 공정은 제품의 치수정밀도가 정확하게 조절괴는 정밀 금속 성형공정이다. 아이어닝 공정은 대개 냉간상태에서 행하여지며 그리고 때로는 단공정 대신에 다단식이 적 용된다. 본연구의 목적은 강소성 유한 요소법으로 단공정과 다단식 아이어닝 공정을 해석하 여 아이어닝 공정에 대한 적절한 설계변수와 최적 설계조건을 찾는데 있다. 본 연구에서는 공정설계게 있어서 공정변수를 다이의 원추각과 단의 개수로 주었다. 본 해석에서는 단공정 아이어닝과 다단식 아이어닝 공정의 성형하중, 응력과 변형도 분포 그리고 격자 변형을 계 산하였다 그리고 이 값들에 대한 공정 변수의 영향을 검토한 결과 성형하중과 격자 변형에 있어서 계산 결과와 잘 일치하였다.

  • PDF

Analysis of Cold-Formed Steel Beams Considering Local Buckling and Lateral Buckling (국부좌굴과 횡좌굴을 고려한 냉간성형 ㄷ 형강보의 해석)

  • Jeon, Jae-Man;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.77-86
    • /
    • 2006
  • The stress analysis of cold-formed channel section steel beams under transverse load is presented. The local buckling as well as the lateral buckling effects are included in the analysis. The analytical model is developed based on the thin-walled beam theory, and a one-dimensional finite element model is formulated to solve the analytical model. Numerical results are compared with AISI code. It shows that the proposed model is appropriate for predicting of stress as well as deflection of the cold-formed channel section beam.

  • PDF

A study on the cold heading process design optimization by taguchi method (다구찌법을 활용한 헤딩공정설계 최적화 연구)

  • Joon Hwang;Jin-Hwan Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.216-225
    • /
    • 2023
  • This paper describes the finite element analysis and die design change of cold heading punching process to increase the cold forging tool life and reduce the tool wear and stress concentration. Through this study, the optimization of punch tool design has been studied by an analysis of tool stress and wear distribution to improve the tool life. Plastic deformation analysis was carried out in order to understand the cold heading process between tool and workpiece stress distribution. Cold heading punch die design was set up to each process with different four types analysis progressing, the cold heading punch dies shapes with combination of point angle and punch edge corner radius shapes of cold forging dies, punch die material properties and frictional coefficient. The design parameters of point angle and corner radius of punch die geometry, die material properties and frictional coefficient were selected to apply optimization with the DoE (design of experiment) and Taguchi method. DoE and Taguchi method was performed to optimize the cold heading punch die design parameters optimization for bolt head cold forging process, it was possible to expect an reduce the cold heading punch die wear to the 37 % compared with current using cold heading punch in the shop floor.