• Title/Summary/Keyword: 성능평가 지표

Search Result 625, Processing Time 0.024 seconds

A study on the standard for determining airborne sound insulation performance of sound barrier panels (방음판의 음향투과손실 측정규격에 관한 연구)

  • Oh, Yang Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.302-311
    • /
    • 2022
  • Sound barrier walls are one of the most effective alternatives for reducing environmental noise on roads and railways in the city center. The insertion loss of the sound barrier against road traffic noise is the sum of the sound transmission loss, sound absorption loss, and sound energy reduction due to the diffraction attenuation of the sound barrier. The sound transmission loss of the sound barrier is one of the important factors that determine the insertion loss of the sound barrier and is a basic indicator that determines the performance of the sound barrier. Nevertheless, there is not a separate standard in Korea for measuring the acoustic transmission loss of sound barrier panels. There are only a few conditions in KS F 4770 series that stipulates on the general material of sound barrier panels. This thesis examines the necessity of the acoustic transmission loss measurement and evaluation standards of sound barrier walls, and seeks a measurement method in a free sound field (anechoic chamber) sound receiving room considering the characteristics of sound barrier walls installed in external spaces, unlike indoor building materials. In addition, a single number evaluation method using a reference spectrum was proposed so that the sound insulation effect according to various installation places such as roadside or railroad side can be easily displayed.

An Experimental Study on the Durability Characterization using Porosity (시멘트 모르타르의 공극률과 내구특성과의 관계에 대한 실험적 연구)

  • Park, Sang Soon;Kwon, Seung-Jun;Kim, Tae Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.171-179
    • /
    • 2009
  • The porosity in porous media like concrete can be considered as a durability index since it may be a routine for the intrusion of harmful ions and room for the keeping moisture. Recently, modeling and analysis techniques for deterioration are provided based on the pore structure with the significance of durability and the relationship between porosity and durability characteristics is an important issue. In this paper, a series of mortar samples with five water to cement ratios are prepared and tests for durability performance are carried out including porosity measurement. The durability test covers those for compressive strength, air permeability, chloride diffusion coefficient, absorption, and moisture diffusion coefficient. They are compared with water to cement ratios and porosity. From the normalized data, when porosity increases to 1.45 times, air permeability, chloride diffusion coefficient, absorption, and moisture diffusion coefficient decrease to 2.3 times, 2.1 times, 5.5 times and 3.7 times, respectively, while compressive strength decreases to 0.6 times. It was evaluated that these are linearly changed with porosity showing high corelation factors. Additionally, intended durability performances are established from the test results and literature studies and a porosity for durable concrete is proposed based on them.

Development of a Practical Algorithm for en-route distance calculation (항로거리 산출을 위한 실용 알고리즘 개발)

  • GeonHwan Park;HyeJin Hong;JaeWoo Park;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.434-440
    • /
    • 2022
  • The ICAO (International civil aviation organization)recommended the implementation of the GANP (global air navigation plan) for strategic decision-making and air traffic management evaluation. In this study, we proposed a new method for finding the route distance from KPI (key performance indicator) 05 actual route extension presented for air traffic management evaluation. For this purpose, we collected trajectory data for one month and calculated the en-route distances using the methods presented in ICAO and the methods presented by this author. In the ICAO method, the intersection point must be estimated through the equation of a circle for radius 40 NM and the equation of a straight line for an inner and outer point close to a circle in the track data, and four flight distances are calculated to calculate the en-route distance. In the method presented in this study, two flight distances are calculated without estimating the intersection point to calculate the en-route distance. To determine the error between the two methods, we used the performance evaluation index RMSE (root mean square error) and the determination factor R2 of the regression model.

Estimation of evaporation from water surface in Yongdam Dam using the empirical evaporation equaion (경험적 증발량 공식을 적용한 용담댐 시험유역의 수면증발량 추정)

  • Park, Minwoo;Lee, Joo-Heon;Lim, Yong-kyu;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.139-150
    • /
    • 2024
  • This study introduced a method of estimating water surface evaporation using the physical-based Penman combination equation (PCE) and the Penman wind function (PWF). A set of regression parameters in the PCE and PWF models were optimized by using the observed evaporation data for the period 2016-2017 in the Yongdam Dam watershed, and their effectiveness was explored. The estimated evaporation over the Deokyu Mountain flux tower demonstrated that the PWF method appears to have more improved results in terms of correlation, but both methods showed overestimation. Further, the PWF method was applied to the observed hydro-meteorological data on the surface of Yongdam Lake. The PWF method outperformed the PCE in the estimation of water surface evaporation in terms of goodness-of-fit measure and visual evaluation. Future studies will focus on a regionalization process which can be effective in estimating water surface evaporation for the ungauged area by linking hydrometeorological characteristics and regression parameters.

Evaluation of Image Qualities for a Digital X-ray Imaging System Based on Gd$_2$O$_2$S(Tb) Scintillator and Photosensor Array by Using a Monte Carlo Imaging Simulation Code (몬테카를로 영상모의실험 코드를 이용한 Gd$_2$O$_2$S(Tb) 섬광체 및 광센서 어레이 기반 디지털 X-선 영상시스템의 화질평가)

  • Jung, Man-Hee;Jung, In-Bum;Park, Ju-Hee;Oh, Ji-Eun;Cho, Hyo-Sung;Han, Bong-Soo;Kim, Sin;Lee, Bong-Soo;Kim, Ho-Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.253-259
    • /
    • 2004
  • in this study, we developed a Monte Carlo imaging simulation code written by the visual C$\^$++/ programing language for design optimization of a digital X-ray imaging system. As a digital X-ray imaging system, we considered a Gd$_2$O$_2$S(Tb) scintillator and a photosensor array, and included a 2D parallel grid to simulate general test renditions. The interactions between X-ray beams and the system structure, the behavior of lights generated in the scintillator, and their collection in the photosensor array were simulated by using the Monte Carlo method. The scintillator thickness and the photosensor array pitch were assumed to 66$\mu\textrm{m}$ and 48$\mu\textrm{m}$, respertively, and the pixel format was set to 256 x 256. Using the code, we obtained X-ray images under various simulation conditions, and evaluated their image qualities through the calculations of SNR (signal-to-noise ratio), MTF (modulation transfer function), NPS (noise power spectrum), DQE (detective quantum efficiency). The image simulation code developed in this study can be applied effectively for a variety of digital X-ray imaging systems for their design optimization on various design parameters.

A Study on Damage factor Analysis of Slope Anchor based on 3D Numerical Model Combining UAS Image and Terrestrial LiDAR (UAS 영상 및 지상 LiDAR 조합한 3D 수치모형 기반 비탈면 앵커의 손상인자 분석에 관한 연구)

  • Lee, Chul-Hee;Lee, Jong-Hyun;Kim, Dal-Joo;Kang, Joon-Oh;Kwon, Young-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.5-24
    • /
    • 2022
  • The current performance evaluation of slope anchors qualitatively determines the physical bonding between the anchor head and ground as well as cracks or breakage of the anchor head. However, such performance evaluation does not measure these primary factors quantitatively. Therefore, the time-dependent management of the anchors is almost impossible. This study is an evaluation of the 3D numerical model by SfM which combines UAS images with terrestrial LiDAR to collect numerical data on the damage factors. It also utilizes the data for the quantitative maintenance of the anchor system once it is installed on slopes. The UAS 3D model, which often shows relatively low precision in the z-coordinate for vertical objects such as slopes, is combined with terrestrial LiDAR scan data to improve the accuracy of the z-coordinate measurement. After validating the system, a field test is conducted with ten anchors installed on a slope with arbitrarily damaged heads. The damages (such as cracks, breakages, and rotational displacements) are detected and numerically evaluated through the orthogonal projection of the measurement system. The results show that the introduced system at the resolution of 8K can detect cracks less than 0.3 mm in any aperture with an error range of 0.05 mm. Also, the system can successfully detect the volume of the damaged part, showing that the maximum damage area of the anchor head was within 3% of the original design guideline. Originally, the ground adhesion to the anchor head, where the z-coordinate is highly relevant, was almost impossible to measure with the UAS 3D numerical model alone because of its blind spots. However, by applying the combined system, elevation differences between the anchor bottom and the irregular ground surface was identified so that the average value at 20 various locations was calculated for the ground adhesion. Additionally, rotation angle and displacement of the anchor head less than 1" were detected. From the observations, the validity of the 3D numerical model can obtain quantitative data on anchor damage. Such data collection can potentially create a database that could be used as a fundamental resource for quantitative anchor damage evaluation in the future.

Comparison of Different Multiple Linear Regression Models for Real-time Flood Stage Forecasting (실시간 수위 예측을 위한 다중선형회귀 모형의 비교)

  • Choi, Seung Yong;Han, Kun Yeun;Kim, Byung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.9-20
    • /
    • 2012
  • Recently to overcome limitations of conceptual, hydrological and physics based models for flood stage forecasting, multiple linear regression model as one of data-driven models have been widely adopted for forecasting flood streamflow(stage). The objectives of this study are to compare performance of different multiple linear regression models according to regression coefficient estimation methods and determine most effective multiple linear regression flood stage forecasting models. To do this, the time scale was determined through the autocorrelation analysis of input data and different flood stage forecasting models developed using regression coefficient estimation methods such as LS(least square), WLS(weighted least square), SPW(stepwise) was applied to flood events in Jungrang stream. To evaluate performance of established models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient (NSEC), mean absolute error (MAE), adjusted coefficient of determination($R^{*2}$). The results show that the flood stage forecasting model using SPW(stepwise) parameter estimation can carry out the river flood stage prediction better in comparison with others, and the flood stage forecasting model using LS(least square) parameter estimation is also found to be slightly better than the flood stage forecasting model using WLS(weighted least square) parameter estimation.

Comparison and analysis of data-derived stage prediction models (자료 지향형 수위예측 모형의 비교 분석)

  • Choi, Seung-Yong;Han, Kun-Yeun;Choi, Hyun-Gu
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.547-565
    • /
    • 2011
  • Different types of schemes have been used in stage prediction involving conceptual and physical models. Nevertheless, none of these schemes can be considered as a single superior model. To overcome disadvantages of existing physics based rainfall-runoff models for stage predicting because of the complexity of the hydrological process, recently the data-derived models has been widely adopted for predicting flood stage. The objective of this study is to evaluate model performance for stage prediction of the Neuro-Fuzzy and regression analysis stage prediction models in these data-derived methods. The proposed models are applied to the Wangsukcheon in Han river watershed. To evaluate the performance of the proposed models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient(NSEC), mean absolute error(MAE), adjusted coefficient of determination($R^{*2}$). The results show that the Neuro-Fuzzy stage prediction model can carry out the river flood stage prediction more accurately than the regression analysis stage prediction model. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.

The identification of Raman spectra by using linear intensity calibration (선형 강도 교정을 이용한 라만 스펙트럼 인식)

  • Park, Jun-Kyu;Baek, Sung-June;Park, Aaron
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.32-39
    • /
    • 2018
  • Raman spectra exhibit differences in intensity depending on the measuring equipment and environmental conditions even for the same material. This restricts the pattern recognition approach of Raman spectroscopy and is an issue that must be solved for the sake of its practical application, so as to enable the reusability of the Raman database and interoperability between Raman devices. To this end, previous studies assumed the existence of a transfer function between the measurement devices to obtain a direct spectral correction. However, this method cannot cope with other conditions that cause various intensity distortions. Therefore, we propose a classification method using linear intensity calibration which can deal with various measurement conditions more flexibly. In order to evaluate the performance of the proposed method, a Raman library containing 14033 chemical substances was used for identification. Ten kinds of chemical Raman spectra measured using three different Raman spectroscopes were used as the experimental data. The experimental results show that the proposed method achieves 100% discrimination performance against the intensity-distorted spectra and shows a high correlation score for the identified material, thus making it a useful tool for the identification of chemical substances.

RIPE: RSVP-in-IP Encapsulation to Support QoS for Mobile IP Networks (RIPE: Mobile IP망에세 QoS를 지원하기 위한 RSVP-in-IP 캡슐화 방안)

  • Min-Kyu, Kim;Myong-Soon, Park
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.5
    • /
    • pp.501-510
    • /
    • 2004
  • While the Internet keeps its permeation into every aspect of human life, two things stand out. One is the requirement for high quality of services to support multimedia data service.'The other is the desire for ubiquitous network connection. Combining the two things makes the Internet possible in supporting multimedia communications for nomadic users on the locomotion. To support QoS communication for mobile users by applying RSVP to Mobile IP, RSVP Tunnel, which specifies building separately a RSVP session between the home agent and the foreign agent, was proposed. However, the RSVP Tunnel method breeds bandwidth overhead and association problems in tunnel because of duplicated RSVP messages use. To resolve these problems, in this paper, we propose the new encapsulation method, the RSVP-in-IP Encapsulation (RIPE) that can support QoS guaranteed service efficicntly in Mobile IP networks. The proposed method supports RSVP mobility to Mobile If tunneling mechanism efficiently without any additional session as the RSVP Tunnel scheme. Moreover it removes the critical problems of bandwidth overhead in a tunnel and association by duplicated messages. We compared the performance of our proposed scheme with RSVP Tunnel scheme in term of mean delay, mean data rate and bandwidth overhead in tunnel.