DOI QR코드

DOI QR Code

Estimation of evaporation from water surface in Yongdam Dam using the empirical evaporation equaion

경험적 증발량 공식을 적용한 용담댐 시험유역의 수면증발량 추정

  • Park, Minwoo (Department of Civil and Environmental Engineering, Sejong University) ;
  • Lee, Joo-Heon (Department of Civil Engineering, Joongbu University) ;
  • Lim, Yong-kyu (Water Resources Management Research & Planning Department., Water Supply and Demand Analysis Team, K-water) ;
  • Kwon, Hyun-Han (Department of Civil & Environmental Engineering, Sejong University, Seoul, Korea)
  • 박민우 (세종대학교 건설환경공학과) ;
  • 이주헌 (중부대학교 토목공학과) ;
  • 임용규 (한국수자원공사 물관리기획처 물수요공급분석부) ;
  • 권현한 (세종대학교 건설환경공학과)
  • Received : 2024.01.08
  • Accepted : 2024.02.16
  • Published : 2024.02.29

Abstract

This study introduced a method of estimating water surface evaporation using the physical-based Penman combination equation (PCE) and the Penman wind function (PWF). A set of regression parameters in the PCE and PWF models were optimized by using the observed evaporation data for the period 2016-2017 in the Yongdam Dam watershed, and their effectiveness was explored. The estimated evaporation over the Deokyu Mountain flux tower demonstrated that the PWF method appears to have more improved results in terms of correlation, but both methods showed overestimation. Further, the PWF method was applied to the observed hydro-meteorological data on the surface of Yongdam Lake. The PWF method outperformed the PCE in the estimation of water surface evaporation in terms of goodness-of-fit measure and visual evaluation. Future studies will focus on a regionalization process which can be effective in estimating water surface evaporation for the ungauged area by linking hydrometeorological characteristics and regression parameters.

본 연구에서는 물리 기반 증발량 경험식인 Penman 혼합식(Penman combination equation, PCE)과 경험적인 바람 함수(Penman wind function, PWF)를 이용한 저수지 증발량 추정 방법을 제시하였다. 용담댐 시험유역에서 2016-2018년 기간의 실측 증발량 자료를 이용하여 두 가지 경험식에 매개변수를 추정하고 적용성을 검토하였다. 용담댐 시험유역 중 덕유산 플럭스 타워에서 PWF와 PCE에 대해 증발량을 평가한 결과, PWF 방법이 상관성 측면에서 더욱 개선된 결과를 보여주었지만, 두 가지 방법 모두 과대 추정 현상을 나타내었다. 용담호 수면 위에서 관측된 기상자료를 활용하여 PWF 방법을 통한 증발량을 평가하였으며, 관측 수면증발량과 통계적 지표 및 시각적 평가에서 우수한 성능을 확인하였다. 향후 본 연구를 통해 산정된 매개변수를 이용하여 저수지 수면 증발량을 간접적으로 추정할 수 있을 것으로 판단되나, 정확한 저수지 수면증발량 추정을 위해서는 타 댐들에 수면 증발량을 종합적으로 연계한 지역화 연구도 필요할 것으로 판단된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 수자원종합연구 및 한국환경산업기술원의 가뭄대응 물관리 혁신 기술개발사업의 지원을 받아 연구되었습니다(과제번호:2022003610003).

References

  1. Alvarez, V.M., Gonzalez-Real, M.M., Baille, A., Valero, J.M., and Elvira, B.G. (2008). "Regional assessment of evaporation from agricultural irrigation reservoirs in a semiarid climate." Agricultural Water Management, Vol. 95, No. 9, pp. 1056-1066. https://doi.org/10.1016/j.agwat.2008.04.003
  2. Dalton, J. (1802). "Experimental essays on the constitution of mixed gases; on the force of steam or vapor from waters and other liquids, both in a Torricellian vacuum and in air; on evaporation; and on the expansion of gases by heat." Memoires of the Literary and Philosophical Society of Manchester, Vol. 2, pp. 535-602.
  3. Gokbulak, F., and Ozhan, S. (2006). Water loss through evaporation from water surfaces of lakes and reservoirs in Turkey. Official Publication of the European Water Association, Bonn, Germany.
  4. Guenther, S.M., Moore, R.D., and Gomi, T. (2012). "Riparian microclimate and evaporation from a coastal headwater stream, and their response to partial-retention forest harvesting." Agricultural and Forest Meteorology, Vol. 164, pp. 1-9. https://doi.org/10.1016/j.agrformet.2012.05.003
  5. Kim, H.J., Kim, K., and Kwon, H.H. (2021). "Development of a surrogate model based on temperature for estimation of evapotranspiration and its use for drought index applicability assessment." Journal of Korea Water Resources Association, KWRA, Vol. 54, No. 11, pp. 969-983. https://doi.org/10.3741/JKWRA.2021.54.11.969
  6. Lee, K.H., Oh, N.S., and Jeong, S.T. (2007). "Analysis on the change in the pan evaporation rate in the Coastal zone." Journal of Korean Society of Coastal and Ocean Engineers, JKSCOE, Vol. 19, No. 3, pp. 244-252.
  7. Maheu, A., Caissie, D., St-Hilaire, A., and El-Jabi, N. (2014). "River evaporation and corresponding heat fluxes in forested catchments." Hydrological Processes, Vol. 28, No. 23, pp. 5725-5738. https://doi.org/10.1002/hyp.10071
  8. Monteith, J., and Unsworth, M. (2013). Principles of environmental physics: plants, animals, and the atmosphere. Academic Press, Amsterdam, Netherlands, pp. 13-22.
  9. Moore, R.D., and Leach, J.A. (2021). "Predicting latent and sensible heat fluxes in stream temperature models: Current challenges and potential solutions." Water Resources Research, Vol. 57, No. 2, e2020WR028712.
  10. Murray, F.W. (1966). On the computation of saturation vapor pressure. Rand Corporation, Santa Monica, CA, U.S. p. 9.
  11. Penman, H.L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 193, No. 1032, pp. 120-145.
  12. Perez, A., Lagos, O., Lillo-Saavedra, M., Souto, C., Paredes, J., and Arumi, J.L. (2020). "Mountain lake evaporation: A comparative study between hourly estimations models and in situ measurements." Water, Vol. 12, No. 9, 2648.
  13. Szeitz, A.J., and Moore, R.D. (2020). "Predicting evaporation from mountain streams." Hydrological Processes, Vol. 34, No. 22, pp. 4262-4279. https://doi.org/10.1002/hyp.13875
  14. Tetens, O. (1930). "Uber einige meteorologische Begriffe." Zeitschrift fur Geophysik, Vol. 6, pp. 297-309.
  15. Wang, W., Xu, F., Liu, S., Wei, L., Feng, J., Wei, H., Dong, L., Wu, Y., and Kobayashi, T. (2019). "Estimating evaporation from irrigation canals in the midstream areas of the Heihe River Basin by a Double-Deck Surface Air Layer (DSAL) Model." Water, Vol. 11, No. 9, 1788.
  16. Yoon, Y.N. (2007). Hydrology: Fundamentals and applications. Cheingmoongak, pp. 135-161.