Browse > Article
http://dx.doi.org/10.17663/JWR.2011.13.3.547

Comparison and analysis of data-derived stage prediction models  

Choi, Seung-Yong (National Disaster Management Institute)
Han, Kun-Yeun (School of Archi. & Civil Engineering, Kyungpook National Univ.)
Choi, Hyun-Gu (School of Archi. & Civil Engineering, Kyungpook National Univ.)
Publication Information
Journal of Wetlands Research / v.13, no.3, 2011 , pp. 547-565 More about this Journal
Abstract
Different types of schemes have been used in stage prediction involving conceptual and physical models. Nevertheless, none of these schemes can be considered as a single superior model. To overcome disadvantages of existing physics based rainfall-runoff models for stage predicting because of the complexity of the hydrological process, recently the data-derived models has been widely adopted for predicting flood stage. The objective of this study is to evaluate model performance for stage prediction of the Neuro-Fuzzy and regression analysis stage prediction models in these data-derived methods. The proposed models are applied to the Wangsukcheon in Han river watershed. To evaluate the performance of the proposed models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient(NSEC), mean absolute error(MAE), adjusted coefficient of determination($R^{*2}$). The results show that the Neuro-Fuzzy stage prediction model can carry out the river flood stage prediction more accurately than the regression analysis stage prediction model. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.
Keywords
Data-derived model; Neuro-Fuzzy; regression analysis; stage prediction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 고영준. 2001. 하천의 시유출량 예측을 위한 퍼지 신경회로망의 적용. 석사학위 논문, 전남대학교. pp. 1-6, pp. 14-17.
2 건설교통부. 2005. 주요지천 홍수예보 프로그램개선.
3 Shu, C. and Ouarda, T.B.M.J. 2008. Regional flood frequency analysis at ungauged sites using the adaptive neuro fuzzy inference system. Journal of Hydrology, 349: 31-43.   DOI
4 Nayak, P.C., Sudheer, K.P., Rangan, D.M., and Ramasastri, K.S. 2005. Short-Term Flood Forecasting with a Neurofuzzy Model. Water Resources Research, 41(4), W04004.
5 Tangborn, W.V. and Rasmussen, L.A. 1976. Hydrology of North Cascades region, Washington-part 2: a proposed hydrometeorological streamflow prediction method. Water Resources Research, 12: 203-216.   DOI   ScienceOn
6 VanderKwaak, J.E. and Loague, K. 2001. Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resources Research, 37(4): 999.   DOI   ScienceOn
7 Yurekli, K., Kurung, A. and Ozturk, F. 2005. Testing residuals of an ARIMA model on the Cekerek stream watershed in Turkey. Turkish Journal of Engineering and Environmental Sciences, 29: 61-74.
8 Kurtulus, B. and Razack, M. 2009. Modeling daily discharge responses of a large karstic aquifer using soft computing methods Artificial neural network and neuro fuzzy. Journal of Hydrology, 375: 146-162.
9 McKerchar, A.I. and Delleur, J.W. 1974. Applications of seasonal parametric linear stochastic models to monthly flow data. Water Resources Research, 10: 246-255.   DOI   ScienceOn
10 Phien, H.N., Huong, B.K. and Loi, P.D. 1990. Daily forecasting with regression analysis. Water SA, 16(3): 179-184.
11 Schilling, K.E. and Wolter, C.F 2005. Estimation of streamflow, baseflow and nitrate-nitrogen loads in Iwoa using multiple regression models. Journal of American Water Resources
12 정대명. 2003 월 댐유입량 예측을 위한 뉴로-퍼지시스템의 적용. 석사학위 논문, 세종대학교. pp. 2-5.
13 Govindaraju, R.S. 2000. Artificial neural networks in hydrology II:hydrologic applications. Journal of Hydrologic Engineering, 5(2): 124-137.   DOI   ScienceOn
14 Huynh N. P. and Nguyen D. A. K. 2003. Flood forecasting for the upper reach of the Red River Basin, North Vietnam. http://www.wrc.org.za
15 Jang, J.-S. 1992. Self-learning fuzzy controllers based on temporal backpropagation. IEEE Trans Neural Netw, 3(5): 714-723.   DOI   ScienceOn
16 Kokkonen, T.S. and Jakeman, A.J. 2001. A comparison of metric and conceptual approaches in rainfall-runoff modeling and its implications. Water Resources Research, 37(9): 2345-2353.   DOI   ScienceOn
17 진영훈. 2000 하천의 유출량 예측을 위한 인공신경망 이론의 적용. 석사학위 논문. 전남대학교.
18 Aquil, M., Kita, I., Yano, A., and Nishiyama, S. 2007. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of Hydrology, 337(1-2), 22-34   DOI   ScienceOn
19 Brown, M. and Harris, C. 1994. Neuro-fuzzy adaptive modeling and control. Prentice Hall, New York.
20 Chaoulakou, A., Assimacopoulos, D. and Lekkas, T. 1999. Forecasting daily maximum ozon concentration in the Athens basin. Environmental Monitoring and Assessment, 56: 97-112.   DOI   ScienceOn
21 Chang, F.J., and Chen, Y.C. 2001. A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of Hydrology, 245: 153-164.   DOI
22 신성일. 2002. 신경회로망과 뉴로-퍼지를 이용한 홍수량예측에 관한 연구. 석사학위논문, 경일대학교.
23 Firat, M., Turan, M.E., and Yurdusev, M.A. 2009. Comparative analysis of fuzzy inference systems for water consumption time series prediction. Journal of Hydrology, 374: 235-241.   DOI
24 Gautam, D.K., and Holz, K.P. 2001. Rainfallrunoff modeling using adaptive neuro-fuzzy systems, Journal of Hydroinformatics, pp. 3-10.
25 성지연, 허준행. 2009. 통계적 모형을 이용한 지천 홍수예측. 한국수자원학회 학술발표회논문집, pp. 1524-1527.
26 윤강훈, 김태균. 2003. 레이더 예측 강우를 이용한 다중회귀 유출 모형의 개발. 대한토목학회 학술발표회 논문집, pp. 2187-2198.
27 윤강훈, 신현민. 1994. 한강인도교 수위와 영향인자간의 다중회귀분석에 의한 홍수위 예측모형. 한국수자원학회지, 제27권, 제3호, pp. 55-69.
28 윤용남, 원석연. 1991. 미계측 중소유역의 월유출량 산정을 위한 다중회귀모형 연구. 한국수자원학회지, 제24권, 제3호, pp. 71-82.
29 정동국, 이범희. 2009. 회귀기법을 이용한 도시홍수위 예측모형의 개발. 한국수자원학회논문집, 43(2): 221-231.
30 이범희. 2010. 회귀분석에 의한 도시홍수 예보시스템의 개발. 대한토목학회논문집, 30(4-B): 347-359.