DOI QR코드

DOI QR Code

A Study on Damage factor Analysis of Slope Anchor based on 3D Numerical Model Combining UAS Image and Terrestrial LiDAR

UAS 영상 및 지상 LiDAR 조합한 3D 수치모형 기반 비탈면 앵커의 손상인자 분석에 관한 연구

  • Lee, Chul-Hee (Dept. of Geotechnical Engrg. Research, KICT) ;
  • Lee, Jong-Hyun (Dept. of Geotechnical Engrg. Research, KICT) ;
  • Kim, Dal-Joo (Dept. of Spatial Information Engrg. Research, Ko-Mapper) ;
  • Kang, Joon-Oh (Dept. of Spatial Information Engrg. Research, Ko-Mapper) ;
  • Kwon, Young-Hun (Dept. of Spatial Information Engrg. Research, Ko-Mapper)
  • Received : 2022.03.10
  • Accepted : 2022.06.20
  • Published : 2022.07.31

Abstract

The current performance evaluation of slope anchors qualitatively determines the physical bonding between the anchor head and ground as well as cracks or breakage of the anchor head. However, such performance evaluation does not measure these primary factors quantitatively. Therefore, the time-dependent management of the anchors is almost impossible. This study is an evaluation of the 3D numerical model by SfM which combines UAS images with terrestrial LiDAR to collect numerical data on the damage factors. It also utilizes the data for the quantitative maintenance of the anchor system once it is installed on slopes. The UAS 3D model, which often shows relatively low precision in the z-coordinate for vertical objects such as slopes, is combined with terrestrial LiDAR scan data to improve the accuracy of the z-coordinate measurement. After validating the system, a field test is conducted with ten anchors installed on a slope with arbitrarily damaged heads. The damages (such as cracks, breakages, and rotational displacements) are detected and numerically evaluated through the orthogonal projection of the measurement system. The results show that the introduced system at the resolution of 8K can detect cracks less than 0.3 mm in any aperture with an error range of 0.05 mm. Also, the system can successfully detect the volume of the damaged part, showing that the maximum damage area of the anchor head was within 3% of the original design guideline. Originally, the ground adhesion to the anchor head, where the z-coordinate is highly relevant, was almost impossible to measure with the UAS 3D numerical model alone because of its blind spots. However, by applying the combined system, elevation differences between the anchor bottom and the irregular ground surface was identified so that the average value at 20 various locations was calculated for the ground adhesion. Additionally, rotation angle and displacement of the anchor head less than 1" were detected. From the observations, the validity of the 3D numerical model can obtain quantitative data on anchor damage. Such data collection can potentially create a database that could be used as a fundamental resource for quantitative anchor damage evaluation in the future.

현행 비탈면 앵커공법의 보강성능평가는 앵커 두부와 지반밀착도, 앵커 두부의 균열 및 파손에 대해서 정성적으로 성능을 평가하고 있다. 이로 인해 성능저하 상태 점검을 위한 정량적 데이터베이스화와 이를 이용한 시간이력 관리는 어려운 실정이다. 이에 본 연구에서는 비탈면에 설치된 앵커공법의 정량적 유지관리에 활용하기 위하여 UAS 영상과 지상 LiDAR의 사각지대를 보완하기 위한 SfM기반의 조합 3차원 수치모형을 구현하여 손상인자의 수치데이터를 검출하였다. 비탈면과 같은 수직구조물에서 상대적으로 높은 z 좌표 오차를 갖는 UAS 3차원 수치모형에서 사각지대 데이터 공백을 상호 보완하기 위하여 지상 LiDAR 스캔 데이터를 조합하였고 z 좌표 정확도의 향상을 확인하였다. 비탈면에 설치된 10공의 앵커에 임의로 손상을 발생시킨 후에 3차원 수치모형을 구축하였고 정사투영을 통해 균열, 파손, 회전변위와 지반 밀착도에 대한 수치 값을 검출하였다. 8K 해상도로 균열 실측값과 비교시 ±0.05mm의 오차범위에서 0.3mm 미만의 균열 검출이 가능하였다. 앵커 두부의 최대 파손 면적은 설계대비 3% 이내로 발생된 것을 확인하였고, 파손부의 체적 또한 검출하였다. 특히 z 좌표 데이터가 중요한 지반밀착도의 경우 UAS 3차원 수치모형에서는 사각지대로 인한 데이터 공백으로 측정이 불가능하였지만 지상 LiDAR를 조합할 경우 앵커 저면과 지반의 불규칙한 표면에서 표고차 확인이 가능하여 임의의 20개 지점의 평균 표고차를 지반밀착도로 도출하였다. 또한, 앵커 두부의 1° 미만의 회전각과 이동 변위 값도 검출하였다. 이에 본 연구에서 구축한 3차원 수치모형에서 앵커 손상인자의 정량적 데이터 추출이 가능하였고, 이를 데이터베이스화 한다면 정량적 평가지표의 기초자료로써 활용이 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 서울시 산학연 협력사업 2021년도 제5회 서울혁신챌린지(결선) (IC210042)의 지원을 받아 수행된 연구입니다.

References

  1. Cho, H.K., Jang, K.T., Hong, S.J., Hong, G.P., Kim, S.H., and Kwon, S.H. (2020), "Accuracy Analysis for Slope Movement Characterization by Comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry", J. of the Korean Association of Geographic Information Studies, Vol.23, No.4, pp.234-252. https://doi.org/10.11108/KAGIS.2020.23.4.234
  2. Hayakawa, Y.C. and Obanawa, H. (2020), "Volumetric Change Detection in Bedrock Coastal Cliffs Using Terrestrial Laser Scanning and UAS-Based SfM", Sensor, Vol.20, No.12, 3403. https://doi.org/10.3390/s20123403
  3. Jang Y.G., Kwak, Y.J., and Kang, I.J. (2006), "GIS Management on Risk Evaluation of a Road Slope using Terrestrial LiDAR", J. of Civil and Environment Engineering Research, Vol.26, Issue.1, pp.169-175.
  4. Jo, J.G. (2011), "A Study on the Spatial Data Convergence for the Establishment of the Building Modeling of 3D Cadastre", Doctor Thesis, Mokpo National University.
  5. Kang, I.K. and Kim, T.S. (2020), "Accuracy Evaluation of 3D Slope Model Produced by Drone taken Images", J. of the Korean GEO-environmental Society", Vol.21, No.6, pp.13-17. https://doi.org/10.14481/JKGES.2020.21.6.13
  6. Kang, J.O. and Lee, Y.C. (2019), "Construction of 3D Spatial Information of Vertical Structure by Combining UAS and Terrestrial LiDAR", J. of Cadastre & Land Information, Vol.49, No.2, pp. 57-66.
  7. Kim, S. H. (2008), DEM Fusion of Airborne and Terrestrial LiDAR Data, M.D. Thesis, Kwandong University, Korea.
  8. Kim, S.S., Kim, D.M., Shin, D.Y., and Nho, H.J. (2020), "Assessment and Analysis of Disaster Risk for Steep Slope using Drone and Terrestrial LiDAR", Journal of Korean Society for Geospatial Information Science, Vol.28, No.4, pp.13-24.
  9. Kwon, O.I. (2021), "Slope Investigation, Inspection and Maintenance Advanced Technology based on Digital Infrastructure Information", J. of Korean Geosynthetics Society, Vol.20, No.1, pp.8-16.
  10. Kwon, S.W., Park, J.W., Moon, D.Y., Jung, S.W., and Park, H.S. (2017), "Smart Merging Method for Hybrid Point Cloud Data Using UAV and LIDAR in Earth-work Construction", Journal of Procedia Engineering, Vol.196, pp.21-28. https://doi.org/10.1016/j.proeng.2017.07.168
  11. Lee, D.G., Yu, Y.G., and Lee, H.J. (2017), "Comparison of Modeling Product using Rotary-wing Drone and 3D Scanner", Conference of Korea Institute of Korean, pp.184-186.
  12. Lee, K.W. and Park, J.K. (2019), "Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope", Journal of the Korea Academia-Industrial cooperation Society, Vol.20, No.1, pp.323-328.
  13. Lee, Y.C. and Kang, J.O. (2019), "The Precise Three Dimensional Phenomenon Modeling of the Cultural Heritage based on UAS Imagery", J. of Cadastre & Land Information, Vol.49, No.1, pp. 85-101.
  14. Liu, P., Chen, A.Y., Huang, Y.N., Han, J.Y., Lai, J.S., and Kang, S.C. (2014), "A Review of Rotorcraft Unmanned Aerial Vehicle (UAV) Developments and Applications in Civil Engineering", Smart Structures and Systems, Vol.13, No.6, pp.1065-1094. https://doi.org/10.12989/sss.2014.13.6.1065
  15. Mader, D., Blaskow, R., Wesrfeld, P., and Mass, H.G. (2015), "Uav-Based Acquisition of 3d Point Cloud : A Comparison of a Low-Cost Laser Scanner and Sfm-Tools", ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol.XL-3/W3, pp.335-341.
  16. Ministry of Public Safety and Security (2020), The 2020 Annual Natural Disaster Report.
  17. Moon, J.Y., Kim, K.Y., Choi, Y.G., and Min, S.J. (2020), "The Characteristics of Changma Rainfall in South Korea during the New Climatological Period of 1991-2020", J. of Climate Research, Vol.15, No.3, pp.139-152. https://doi.org/10.14383/cri.2020.15.3.139
  18. Morgenthal, G. and Hallermann, N. (2016), "Quality Assessment of Unmanned Aerial Vehicle (UAV) Based Visual Inspection of Structures", Advances in Structural Engineering, Vol.17, No.3, pp. 289-302. https://doi.org/10.1260/1369-4332.17.3.289
  19. Niculita, M., Margarint, M.C., and Tarolli, P. (2020), "Using UAV and LiDAR Data for Gully Geomorphic Changes Monitoring", Development in Earth Surface Processes, Vol.23, pp.271-315. https://doi.org/10.1016/B978-0-444-64177-9.00010-2
  20. Park, E.H. (2010), Research about the Analysis of the Characteristics and the Stability on Rock Slope using Terrestrial LiDAR, M.D Thesis, Paichai University, Korea.
  21. Park, J.K. (2010), "A Study of Monitoring in Slopes of High Collapse Risk Using Terrestrial LiDAR", Journal of Disaster Management, Vol.10, No.6, pp.45-52.
  22. Saak, J., Gallay, M., Kanuk, J., Hofierka, J., and Minar, J. (2019), "Combined Use of Terrestrial Laser Scanning and UAV Photo-grammetry in Mapping Alpine Terrain", Remote Sensing, Vol.11, No.18, 2154. https://doi.org/10.3390/rs11182154
  23. Shigeta, Y., Maeda, K., Yamamoto, H., Yasuda, T., Kaise, S., Maegawa, K., and Ito, T. (2019), "Tunnel Deformation Evaluation by Mobile Mapping System", In Tunnels and Underground Cities: Engineering and Innovation Meet Archaeology, Architecture and Art, pp.3097-3104.
  24. Tang, P., Huber, D., Akinci, B., Lipman, R., and Lytle, A. (2010), "Automatic Reconstruction of As-built Building Information Models from Laser-scanned Point Clouds: A Review of Related Techniques", Automation in Construction, Vol.19, No.7, pp.829-843. https://doi.org/10.1016/j.autcon.2010.06.007
  25. Wang, H., Wang, Q.. Zhai, J., Yuan, D., Zhang,W., Xie, X., Zhou, B., Cai, J., and Lei, Y. (2022), "Design of Fast Acquisition System and Analysis of Geometric Feature for Highway Tunnel Lining Cracks based on Machine Vision, J. of applied Sciences, Vol.12, Issue.5, 2516. https://doi.org/10.3390/app12052516
  26. Wefelscheid, C., Hansch, R., and Hellwich, O. (2011), "Three-dimensional Building Reconstruction using Images Obtained by Unmanned Aerial Vehicles", Int Arch Photogramm Remote Sens Spatial Inform Sci, XXXVIII-1.
  27. Xiao, Y., Kamat, V.R., and Lee, S. (2018), "Monitoring Excavation Slope Stability using Drones", ASCE Construction Research Congress 2018, pp.169-179.
  28. Xiao, Y., Wang, C., Li, J., Zhang, W., Xi, X., Wang, C., and Dong, P. (2015), "Building Segmentation and Modeling from Airborne LiDAR Data", International Journal of Digital Earth, Vol.8, No.9, pp.694-709. https://doi.org/10.1080/17538947.2014.914252
  29. Xie, F., Lin, Z., Gui, D., and Lin, H. (2012), "Study on Construction of 3D Building based on UAV Images", Int Arch Photogramm Remote Sens Spatial Inform Sci, XXXIX-B1.