• Title/Summary/Keyword: 선형파 이론

Search Result 217, Processing Time 0.035 seconds

A Study of the Characteristics and Mechanism of Giant wave Appearance (대양에서의 거대파랑 출현 특성과 기구에 관한 연구)

  • Shin Seung-Ho;Hong Keyyong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.147-152
    • /
    • 2005
  • 선형파 이론에 의한 파랑스펙트럼 분포에 의해서는 30m 크기의 파랑은 현실적으로 거의 발생 불가능하다고 인식되어 왔다. 그러나 최근의 위성 영상을 이용한 조사에 의해 3주간의 기간 통안 25m 이상의 거대파가 10개 이상 관측됨에 따라 실해역에서 빈번히 마주칠 수 있는 현상임이 입증되었으며 이에 따라 지금까지 이유 불명으로 치부되어 왔던 많은 해양 재난이 거대파에 의해 발생했던 것으로 추정되고 있다. 거대파의 발생원인은 파군 형성과 관련한 파고분포 특성의 변화, 전파하는 파군의 비선형 공명간섭 통이 제기되고 있으나, 그 출현의 복잡성과 자료의 부족 등으로 아직 명확하게 해명되지 못하고 있다. 본 연구에서는 실해역에서 발생하는 거대파의 특성 및 선형 및 비선형이론에 근거한 거대파 발생 기구를 고찰하고 비선형 파랑전파를 모사할 수 있는 수치모형을 개발하였다.

  • PDF

Investigation of Importance of Evanescent Modes in Predicting the Transformation of Water Waves by the Linear Wave Theory: 2. Numerical Experiments (선형파 이론에 의한 파랑변형 예측시 소멸파 성분의 중요성 검토 2. 수치 실험)

  • 이창훈;조대희;조용식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2003
  • The magnitude of evanescent modes in terms of dynamics it investigated in case that the transformation of water waves is predicted by the linear wave theory. For the waves propagating over two steps, the eigenfunction expansion method is used to predict the amplitudes of reflected and transmitted waves by the component of evanescent modes as well as propagating modes. Then. the relative importance of evanescent modes to the propagating modes is investigated. The numerical experiments find that the evanescent modes are pronounced at the relative water depth of k$_1$h$_1$=0.11$\pi$ and the water depth ratio of h$_2$/h$_1$ close to zero.

Acoustic Nonlinearity of Surface Wave and Experimental Verification of Characteristics (표면파의 음향 비선형성과 실험적 특성 검증)

  • Lee, Jae-Ik;Kwon, Goo-Do;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.344-350
    • /
    • 2009
  • The goal of this study is to introduce the theoretical background of acoustic nonlinearity in surface wave and to verify its characteristics by experiments. It has been known by theory that the nonlinear parameter of surface wave is proportional to the ratio of $2^{nd}$ harmonic amplitude and the power of primary component in the propagated surface wave, as like as in bulk waves. In this paper, in order to verify this characteristics we constructed a measurement system using contact angle beam transducers and measured the nonlinear parameter of surface wave in an Aluminum 6061 alloy block specimen while changing the distance of wave propagation and the input amplitude. We also considered the effect of frequency-dependent attenuation to the measurement of nonlinear parameter. Results showed good agreement with the theoretical expectation that the nonlinear parameter should be independent on the input amplitude and linearly dependent on the input amplitude and the $2^{nd}$ harmonic amplitude is linearly dependant on the propagation distance.

Investigation of Importance of Evanescent Modes in Predicting the Transformation of Water Waves by the Linear Wave Theory: 1. Derivation of Equations of Wave Energy (선형파 이론에 의한 파랑변형 예측 시 소멸파 성분의 중요성 검토: 1. 에너지 식 유도)

  • 이창훈;조용식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.282-285
    • /
    • 2002
  • The magnitude of evanescent modes in terms of dynamics is investigated in case that the transformation of water waves is predicted using the linear wave theory. In other words, derivation is made of both the kinetic and potential wave energies of evanescent modes as welt as propagating modes. The evanescent modes consist of compound components of propagating and evanescent modes, those of identically equal evanescent modes, and those of identically different evanescent modes. The wave energy per a horizontal distance decreases exponentially with the distance.

Computations of Wave Energy by Stream Function Wave Theory (흐름함수파이론에 의한 파랑 에너지의 계산)

  • Lee, Jung Lyul;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.67-75
    • /
    • 1986
  • This paper introduces the nonlinear Stream Function Wave Theory for design waves efficiently to compute the wave energy and energy transport quantities and to analyze the effects of nonlinearities on them. The Stream Function Wave Theory was developed by Dean for case of the observed waves with assymmetric wave profiles and of the design waves with symmetric theoretical wave profiles. Dalrymple later improved the computational procedure by adding two Lagrangian constraints so that more efficient convergence of the iterative numerical method to a specified wave height and to a zero mean free surface displacement resulted. And the Stream Function coefficients are computed numerically by the improved Marquardt algorithm developed for this study. As the result of this study the effects of nonlinearities on the wave quantities of the average potential energy density, the average kinetic energy density result in overestimation by linear wave theory compared to the Stream Function Wave Theory and increase monotonically with decreasing $L^*/L_O$ and with increasing $H/H_B$. The effects of nonlinearities on the group velocity and the wavelength quantities result in underestimation by linear wave theory and increase monotonically with increasing $H/H_B$. Finally the effect of nonlinearity on the average total energy flux results in overestimation for shallow water waves and underestimation for deep water waves by linear wave theory.

  • PDF

A Study of the Appearance Characteristics and Generation Mechanism of Giant Waves (대양에서의 거대파랑 출현 특성과 발생 기구에 관한 연구)

  • Shin Seung-Ho;Hong Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.181-187
    • /
    • 2006
  • In the wave spectrum distribution based on linear wave theory, the appearance of a giant wave whose wave height reaches to 30m has been considered next to almost impossible in a real sea However since more than 10 giant waves were observed in a recent investigation of global wave distribution which was carried out by the analysis of SAR imagines for three weeks, the existence of the giant waves is being recognized and it is considered the cause of many unknown marine disasters. The change of wave height distribution concerning a formation of wave train, nonlinear wave to wave interaction and so on were raised as the causes of the appearance of the giant waves, but the occurrence mechanism of the giant waves hasn't been cleared yet. In present study, we investigated appearance circumstances of the giant waves in real sea and its occurrence mechanism was analyzed based on linear and nonlinear wave focusing theories. Also, through a development of numerical model of the nonlinear $schr\"{o}dinger$ equation, the formations of the giant wave from progressive wave train were reproduced.

Derivation of the Dispersion Coefficient based on the Linear Wave Theory (선형파 이론에 의한 분산계수 유도)

  • 조홍연;정신택
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.190-194
    • /
    • 2000
  • Dispersion coefficient influenced by the wave parameters was derived analytically using the vertical velocity distribution based on linear wave theory. It is the depth- and wave period-averaged value and shows larger values in deep water condition than in shallow water condition. It also shows the general pattern of the dispersion coefficient in the oscillatory flows, i.e. it converges the specific value as the wave period is much larger than the vertical mixing time but it approaches zcro as the wave period is much smaller than the vertical mixing time. The dispersion coefficient derived in the condition of the simple assumption have to be modified in order to consider the shallow water condition or the real condition.

  • PDF

Characteristics of the Group-Bounded Long Wave (파군에 따른 장주기파의 거동특성)

  • 이철응;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.61-71
    • /
    • 1994
  • A modified method obtained by expanding Longuet-Higgins and Stewart's method (1964) is proposed. which can easily derive the group-bountied long wave due to the irregular were group as well as the regular wave group. The result of the proposed method agree well with those of both second order nonlinear theory and radiation stress theory. Particularly in the shallow water region, three equations from the proposed method, the second order nonlinear theory and the radiation stress theory become identical.

  • PDF

파랑이론의 비교 연구

  • 최한규;구본수
    • 어항어장
    • /
    • s.26
    • /
    • pp.45-53
    • /
    • 1994
  • 본 연구는 유한진폭파 이론(Stokes2, 3, 5차 이론, Streamfunction파 이론)과 미소진폭파 이론(선형파이론)의 각 이론해에 의한 자유수면 변동($\eta$), 물입자수평속도(u), 전파속도(C), 파장(L) 등의 비교 분석을 통하여 각 파랑이론의 적용범위를 검증하고자 했다.

  • PDF

Numerical Analysis of Wave Deformation with Sea Bottom Variation(II) (해저지형 변화에 따른 파랑의 수치해석(II))

  • 김성덕;이성대
    • Water for future
    • /
    • v.20 no.1
    • /
    • pp.49-54
    • /
    • 1987
  • A numerical analysis of the characteristics of wave reflection over rippled beds (sand bars) was carried out By Boundary Element Method(B.E.M) using linear elements. It is assumed that the incident wave is normal and oblique to the rippled beds and the wave may be and the escribed by two-dimensional linear theory. The accuracy of the computational scheme is investigated by comparing the laboratory data, the analytic measured results of the other researchers. The B.E.M results for the normal incident wave is held for the mechanism of the resonant Bragg reflection at the point where the wave length of the bottom undulation is one half the wave length of the surface wave.

  • PDF