• Title/Summary/Keyword: 선형주기시스템

Search Result 194, Processing Time 0.03 seconds

Seismic Performance Evaluation of Freeform Diagrid System (비정형 Diagrid System의 내진성능 평가)

  • Ko, Chang-Kyun;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2011
  • Many new structural systems have been developed to build free-form structures, which is the new architectural trend for aesthetic beauty. The diagrid system resists both gravity and later loads, with its perimeter-diagonal columns. In the current seismic-design provisions, however, a seismic-performance factor for a new structural system has not yet been provided. ATC-63 provides a new methodology for defining various seismic-performance factors, including the response modification factor. In this paper, nonlinear static and dynamic analyses were conducted for the 3D diagrid frame, with each load applied at $0-180^{\circ}$ degrees. Through these analyses, the seismic performance of the diagrid system was evaluated.

Design and Performance Analysis of the Efficient Equalization Method for OFDM system using QAM in multipath fading channel (다중경로 페이딩 채널에서 QAM을 사용하는 OFDM시스템의 효율적인 등화기법 설계 및 성능분석)

  • 남성식;백인기;조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1082-1091
    • /
    • 2000
  • In this paper, the efficient equalization method for OFDM(Orthogonal Frequency Division Multiflexing) System using the QAM(Quadrature Amplitude Modulation) in multipath fading channel is proposed in order to faster and more efficiently equalize the received signals that are sent over real channel. In generally, the one-tap linear equalizers have been used in the frequency-domain as the existing equalization method for OFDM system. In this technique, if characteristics of the channel are changed fast, the one-tap linear equalizers cannot compensate for the distortion due to time variant multipath channels. Therefore, in this paper, we use one-tap non-linear equalizers instead of using one-tap linear equalizers in the frequency-domain, and also use the linear equalizer in the time-domain to compensate the rapid performance reduction at the low SNR(Signal-to-Noise Ratio) that is the disadvantage of the non-linear equalizer. In the frequency-domain, when QAM signals, consisting of in-phase components and quadrature (out-phase) components, are sent over the complex channel, the only in-phase and quadrature components of signals distorted by the multipath fading are changed the same as signals distorted by the noise. So the cross components are canceled in the frequency-domain equalizer. The time-domain equalizer and the adaptive algorithm that has lower-error probability and fast convergence speed are applied to compensate for the error that is caused by canceling the cross components in the frequency-domain equalizer. In the time-domain, To compensate for the performance of frequency-domain equalizer the time-domain equalizes the distorted signals at a frame by using the Gold-code as a training sequence in the receiver after the Gold-codes are inserted into the guard signal in the transmitter. By using the proposed equalization method, we can achieve faster and more efficient equalization method that has the reduced computational complexity and improved performance.

  • PDF

Comparative analysis of linear model and deep learning algorithm for water usage prediction (물 사용량 예측을 위한 선형 모형과 딥러닝 알고리즘의 비교 분석)

  • Kim, Jongsung;Kim, DongHyun;Wang, Wonjoon;Lee, Haneul;Lee, Myungjin;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1083-1093
    • /
    • 2021
  • It is an essential to predict water usage for establishing an optimal supply operation plan and reducing power consumption. However, the water usage by consumer has a non-linear characteristics due to various factors such as user type, usage pattern, and weather condition. Therefore, in order to predict the water consumption, we proposed the methodology linking various techniques that can consider non-linear characteristics of water use and we called it as KWD framework. Say, K-means (K) cluster analysis was performed to classify similar patterns according to usage of each individual consumer; then Wavelet (W) transform was applied to derive main periodic pattern of the usage by removing noise components; also, Deep (D) learning algorithm was used for trying to do learning of non-linear characteristics of water usage. The performance of a proposed framework or model was analyzed by comparing with the ARMA model, which is a linear time series model. As a result, the proposed model showed the correlation of 92% and ARMA model showed about 39%. Therefore, we had known that the performance of the proposed model was better than a linear time series model and KWD framework could be used for other nonlinear time series which has similar pattern with water usage. Therefore, if the KWD framework is used, it will be possible to accurately predict water usage and establish an optimal supply plan every the various event.

Chaotic Analysis of Water Balance Equation (물수지 방정식의 카오스적 분석)

  • 이재수
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.45-54
    • /
    • 1994
  • Basic theory of fractal dimension is introduced and performed for the generated time series using the water balance model. The water balance equation over a large area is analyzed at seasonal time scales. In the generation and modification of mesoscale circulation local recycling of precipitation and dynamic effects of soil moisture are explicitly included. Time delay is incorporated in the analysis. Depending on the parameter values, the system showed different senarios in the evolution such as fixed point, limit cycle, and chaotic types of behavior. The stochastic behavior of the generated time series is due to deterministic chaos which arises from a nonlinear dynamic system with a limited number of equations whose trajectories are highly sensitive to initial conditions. The presence of noise arose from the characterization of the incoming precipitation, destroys the organized structure of the attractor. The existence of the attractor although noise is present is very important to the short-term prediction of the evolution. The implications of this nonlinear dynamics are important for the interpretation and modeling of hydrologic records and phenomena.

  • PDF

FACTS Application for the Voltage Stability with the Analysis of Bifurcation Theory (전압안정도 향상을 위한 FACTS의 적용과 Bifurcation이론 해석)

  • 주기성;김진오
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.394-402
    • /
    • 2000
  • This paper proposes a bifurcation theory method applied for voltage stability analysis and shows the improvement of voltage stability by attaching the FACTS devices in the power system. A power system is generally expressed by a set of equations of highly nonlinear dynamical system which includes system parameters(real or reactive power). Sometimes variation of parameters in the system may result in complication behaviors which give rise to system instability. The addition of FACTS increases the range of voltage stability in the power system. The effect of FACTS which improves voltage stability are illustrated in the case studies by delaying of Unstable Hopf Bifurcation and Saddle Node Bifurcation.

  • PDF

An Optimal PWM Strategy for IGBT-based Traction Inverters (철도용 IGBT인버터를 위한 최적 PWM 전략)

  • 강기호;김영민
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.332-341
    • /
    • 1999
  • 철도용 전동기는 작은 크기와 중량에 비해 큰 추진력(토크)을 필요로 하지만, 전철의 입력전원 시스템의 특유한 성질로 입력전압이 주기적으로 부족하다. 따라서 전압이용률을 최대화할 수 있는 과변조 PWM이 필요하다. 또 철도용 IGBT 인버터의 스위칭 주파수는 기존의 GTO인버터보다 2배 이상 크므로 철도용 IGBT 인버터 전용의 새로운 동기화 전략이 필요하다. 본 논문은 'Min/Max PWM'을 과변조 영역으로 선형 확장하는 과변조 PWM기법과 최적 동기화법을 혼합한 철도용 IGBT 인버터를 위한 최적 PWM 전략을 제안한다. 전동기-관성부하 모델을 대상으로 시뮬레이션한 결과와 축소모델 실험 결과는 본 전략이 타당함을 보여준다.

  • PDF

Uniform Stability of Intervalwise Receding Horizon Controls for Linear Time-Varying Systems (선형 시변 시스템에 대한 주기 예측 제어기의 시불변 안정성)

  • Kim, Ki-Baek;Kwon, Wook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.139-141
    • /
    • 1997
  • In this paper, intervalwise receding horizon controls (IRHCs) are proposed for linear time systems subject to $H_2$ and $H_{\infty}$ problems. Uniform stability conditions are provided for those systems. Under given conditions stability is proved without using an adjoint system. It is also shown that under proposed stability conditions for $H_{\infty}$ problem, $H_{\infty}$-norm bound is satisfied. The results in this paper arc also applicable to periodic systems which belong to the class of time systems.

  • PDF

Transonic Aeroelastic Analysis of a Airfoil with Friction Damping (마찰 감쇠를 고려한 에어포일의 천음속 공탄석 해석)

  • Yoo, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1075-1080
    • /
    • 2010
  • For the aeroelastic analysis of a wing with friction damping, coupled time integration method was used to obtain time responses in the subsonic and transonic regions. To take into account aerodynamic nonlinearity induced by shock wave on the lifting surface, transonic small disturbance equation with in-phase periodic boundary condition was used for unsteady aerodynamic calculation. For 2-DOF airfoil system with displace-dependent friction dampers, the effects of normal load slope and Mach number on flutter boundary were investigated.

Nonlinear Dynamic Analysis of a Cantilever Tube Conveying Fluid with System Identification (시스템 규명을 통한 외팔 송수관의 비선형 동적 거동 해석)

  • 임재훈;정구충;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.495-500
    • /
    • 2003
  • The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experiment and theoretical analysis. These kind of studies have often been performed that finds the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and coefficient of viscoelasticity in tube material are discussed. The parameters are investigated by means of a system identification so that comparisons are made between numerical analysis using the parameters of a handbook and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits and bifurcation diagram so that one can define optimal parameters for system design.

  • PDF

어선의 GM 변화에 따른 운동응답특성 실험적 연구

  • 최이찬;김정휘;임남균;윤동협
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.419-421
    • /
    • 2022
  • 어선은 어획물로 인한 무게 변화 및 어구 사용에 의한 외력으로 GM이 변화한다. 하지만 실시간으로 변화하는 GM을 추정하는 것은 어려우며, 현재 적용되는 추정식은 어선에 대입하기에 정확성이 떨어진다. 이에 본 논문은 어선의 GM 추정식 개발에 기여하기 위해 어선의 Roll 운동응답을 분석하고, 실험과 시뮬레이션의 GM과 파경사 관계를 밝히고자 한다. 7톤 급의 실제 운항 중인 어선의 모델선 GM을 변화시키면서 파경사별 Roll 운동응답 데이터를 수집한다. GM 변화의 경우 선박 무게중심부에 높이 방향으로 추를 조절할 수 있도록 했으며, 파경사는 동일 주기 4가지 파경사를 선정하였다. GM과 파경사가 커질수록 Roll 응답이 증가하는 경향을 보이며, GM과 파경사가 커짐에 따라 기울기가 비선형성을 보이며 증가하는 것을 확인하였다. 본 연구를 통해서 어선의 GM과 파경사의 관계를 파악하고, GM추정에 사용할 수 있느 보정 계수를 도출할 수 있다. 추후에 본 연구 내용을 활용하여 운항 중인 어선의 실시간 GM 추정시스템 개발에 기여가 가능할 것으로 생각한다.

  • PDF