인간 소뇌의 구조와 기능을 간략하게 수학적으로 모델링하여 입력에 따른 시스템의 적정 출력을 학습에 의한 적응 제어 방식으로 추출해 내는 소뇌모델 대수제어기(CMAC : Cerebellar Model Arithmetic Controller)가 제안되었다. 본 논문에서는 연구개발된 기존 신경회로망과의 비교 분석에 의거하여, 소뇌모델 대수제어기 대신 네트의 특성에 따라 소뇌모델 선형조합 신경망(CMLAN : Cerebellum Model Linear Associator Network)이라 하였다. 소뇌모델 선형조합 신경망은 시스템의 제어 함수치를 결정하는 데 있어, 기존의 제어방식이 시스템의 모델링을 기초로 하여 알고리즘에 의한 수치해석적 또는 분석적 기법으로 모델 해를 산출하는 것과 달리, 학습을 통하여 저장되는 분산기억 소자들의 함수치를 선형적으로 조합함으로써 시스템의 입출력을 결정한다. 분산기억 소자로의 함수치 산정 및 저장은 소뇌모델 선형조합 신경망이 갖는 고유의 구조적 상태공간 매핑(State Space Mapping)과 델타규칙(Delta Rule)에 의거한 시스템의 입출력 상태함수의 학습으로써 수행된다. 본 논문을 통하여 소뇌모델 선형조합신경망의 구조적 특성, 학습 성질과 상태공간 설정 및 시스템의 수렴성을 규명하였다. 또한 기존의 최대 편차수정 학습 알고리즘이 갖는 비능률성 및 적용 제한성을 극복한 효율적 학습 알고리즘들을 제시하였다. 언급한 신경망의 특성 및 제안된 학습 알고리즘들의 능률성을 다양한 학습이득(Learning Gain)하에서 비선형 함수를 컴퓨터로 모의 시험하여 예시하였다.
이 논문에서는 미디언 필터의 선형 조합을 통해 임의의 주파수 특성을 갖는 필터 구조와 그 설계 방법을 제안한다. Linear-phase FIR 저대역통과 필터의 홀수번째 필터 계수의 부호를 바꾸면 FIR 고대역 통과 필터를 얻을 수 있는데, 이것은 필터 계수의 부호가 모두 양수인 두 개의 부분 필터의 차와 같은 모양을 가진다. 이 과정을 일반화하여 비선형 필터에 적용하면 LCWM(linear combination of median filter)필터는 가중 미디언 부필터(sub-filter)의 선형 조합으로 구성된다. 이는 선형 대수학에서 어떤 공간상의 임의의 벡터가 그 공간의 기저 (basls) 벡터들의 선형 조합으로 표현된다는 사실과 유사하다. 따라서 부필터의 필터 계수를 기저 벡터로이용하여 얻어지는 기저 행렬과 필터의 주파수 특성을 조절하는 계수 벡터를 구함으로써 LCWM 필터를 설계할 수 있다. 제안된 필터 설계 방법을 이용하면 특정 주파수 특성을 가지는 FIR 필터와 유사한 특성을 갖는 비선형 필터 구조를 만들 수 있다. LCWM 필터는 고대역 통과, 저대역 통과, BP(band-pass), BS(band-stop)의 임의의 주파수 특성을 가지는 필터로 설계될 수 있음이 실험을 통해 확인되었다.
웨이브릿 변환은 시간 및 주파수에 대하여 국부성을 가지며, 비정상상태의 신호를 해석하는데 유용하다. 웨이브릿 변환에서의 기저함수들은 원형 웨이브릿을 천이(translation) 및 확장/수축(dilation)을 시킴으로서 만들어진다. 본 논문은 두 개의 웨이브릿을 선형적으로 조합한 선형조합 웨이브릿 변환을 사용하여 시간-주파수 분석방법을 제안하였다. 그리고 제안된 선형조합 웨이브릿 변환을 사용하여 진단모니터링 시스템에 적용하였다. 제안한 선형조합 웨이브릿 변환 분석 방법의 유효성을 검증하기 위하여 FFT(Fast Fourier Transform), Daubechies, Haar 기법과 비교한다. 분석 대상 신호로는 linear chirp 신호, 팬 소음신호, 회전체 회전신호, 전기신호를 사용하였다. 그 결과는 정상상태 신호처럼 비정상상태 시간 신호를 나타내는데 적당하다. 또한 선형조합 웨이브릿을 사용한 진단 모니터링 시스템은 효과적인 신호분석을 수행한다.
Communications for Statistical Applications and Methods
/
제4권3호
/
pp.863-879
/
1997
정규분포에 대한 적합도 검정은 실제적인 측면이나 이론적인 측면에서 그 중요성을 무시할 수 없다. 본 연구에서는 이변량 정규분포의 적합도 검정을 위한 통계량을 제안하였다. 주요 아이디어는 모든 가능한 이변량 분포의 선형조합을 고려하여, 그 선형조합이 순서통계량을 이론적인 분위수와 비교하는 것이다. 또한 제안된 통계량의 극한분포가 Gaussian process의 적분의 형태로 표시될 수 있음을 보였다.
기존의 연구들은 댐퍼만에 의한 부가감쇠비의 Universal Curve만을 제공하였기 때문에 실무에서는 케이블의 구조감쇠 및 공기역학적감쇠와 같은 자체감쇠를 독립적으로 고려하곤 한다. 즉, 케이블에 발생하는 자체감쇠비와 댐퍼에 의해 부여되는 Universal Curve로부터 얻은 부가감쇠비를 산술적으로 합하여 케이블-댐퍼 시스템의 전체감쇠비를 결정해 왔다. 하지만 이러한 선형조합 접근법은 이론적인 근거가 미약하며 관련된 연구도 찾아볼 수 없는 실정이므로 이에 관한 유효성을 검증해 볼 필요가 있다. 이것을 위해 본 연구에서는 자체감쇠를 고려한 전체감쇠비 해석법을 개발하여 정해를 제시하고 이것을 기존의 선형조합 접근법에 의해 얻어진 전체감쇠비와 비교하여 선형조합 접근법의 유효성 여부를 검증하였다. 본 연구의 결과에 의하면, 강성은 작고 최적감쇠계수와 비슷한 감쇠계수를 갖는 댐퍼가 지점에서 가깝게 설치되어 있으며, 케이블의 진동이 저차 모드 위주로 발생하고 케이블의 자체감쇠가 크지 않은 일반적인 풍환경에서는 기존의 연구그룹에서 제시하는 연구결과나 선형조합 접근법을 적용하는 것에 무리가 따르지 않는다. 하지만 외부댐퍼나 예기치 못한 고차 진동모드의 발생, 강성이 큰 댐퍼가 사용되는 경우에는 본 연구를 적용하는 것이 바람직한 것으로 나타났다. 본 연구는 케이블의 자체감쇠를 고려한 전체감쇠비의 정해를 제시하고 이것을 토대로 선형조합 접근법에 대한 적용근거를 제시하였다는 점에서 의미를 찾을 수 있다. 차후 본 연구를 발전시켜 공기역학적감쇠에 대응하는 최적감쇠계수를 실시간으로 제시할 수 있게 된다면 MR(Magneto-rheological) 댐퍼와 같은 준능동 댐퍼의 케이블-댐퍼 시스템 제어의 중요한 알고리즘이 될 것으로 기대된다.
지하구조물의 주위지반은 일반적으로 퇴적층의 형성 또는 지각의 변동에 의해 다층구조를 가지게 되므로, 구조물 및 주위지반의 거동을 정확히 예측하기 위해서는 해석에 다층구조의 영향을 반영해야 한다. 본 연구에서는 다층으로 구성된 지하구조계를 대상으로 하여 구조물과 그 주변에는 비선형 유한요소를 사용하고, 비선형성이 상대적으로 미약한 주변 다층지반에는 선형 경계요소를 사용하여 재료의 비선형성과 비균질성을 고려한 효율적인 조합해석방법을 개발하고자 한다. 반무한영역에 설정되는 다층구조계를 경계요소로 해석할 경우 그 기본해가 제한되어 있으므로, 본 연구에서는 기존의 무한기본해를 이용하는 방법을 사용하였다. 무한기본해를 이용하는 내부영역문제의 경우 각각의 균질한 층을 부영역(subdomain)으로 분할하고 계방정식을 구성한 뒤에 접합면에 대하여 평형조건과 적합조건을 만족시켜 주는 방법을 사용하여 비균질성을 고려한다. 부영역으로 층을 분할한 내부영역문제의 경계요소해석 결과는 선형 유한요소해석 결과와 비교하여 검증하였고, 검증된 경계요소 프로그램을 비선형 유한요소 프로그램과 조합하였다. 조합해석 결과, 굴착부 주변의 응력집 중부에는 비선형 유한요소를 사용하고, 비선형의 영향이 미소한 주변의 다층지반에 대해서는 부영역에 의한 선형 경계요소를 사용하는 조합해석방법이 합리적이고 효율적임을 알 수 있었다.
연구 I에서 수행한 소뇌모델 선형조합 신경망(CMLAN)의 분석 결과와 제안된 능률적 학습 알고리즘들에 의거하여 이차원 비선형 함수치의 출력 모의시험과 팔의 형태에 따라 두개의 목적치를 갖는 2 자유도 머니퓨레이터의 동작지령 산출 모의시험을 행하였다. 특히 2 자유도 머니퓨레이터의 경우, 작업공간에 적절한 입력네트의 변수를 선정하고 하나의 입력공간을 공유하는 두개의 세부 소뇌모델 선형조합 신경망을 서로 연결하는 구조로써 팔의 형태와 목적 지점에 따라 네트를 선정하는 구조를 갖도록 하였다. 제안한 학습 알고리즘의 성능 및 CMLAN의 학습에 따른 효과를 학습이득에 따라 컴퓨터로 모의시험하였으며 그 결과를 분석하였다. 잘 알려진 신경망인 BACK-PROPAGATION 다층(Multi-Layer) 신경망과 함수연결 신경망(Functional Link Net)을 이용한 모의시험 결과를 비교 분석하였다. CMLAN의 학습 능률성은 학습에 소요되는 컴퓨터의 cpu시간과 학습 중의시스템의 최대 편차와 RMS 편차의 변이도 및 최종 시스템 수렴치로서 나타내었다.
키 수열 발생기는 함수 조합 형태에 따라 여러 가지로 분류될 수 있으며, 비도 기본 요소(랜덤 특성, 주기, 선형 복잡도, 상관 면역도, 키 수열의 수 등)는 비선형 함수에 따라 달라진다. 모든 기본 요소를 잘 만족하는 키 수열 발생기는 설계가 어렵지만, 각 요소별로 특성이 뛰어난 발생기를 잘 조합하면 고비도 시스템을 설계할 수 있다. 본 논문에서는 선형 복잡도와 상관 면역도 측면에서 강한 개선된 합산 수열 발생기와 키 수열 수사 많은 일반화된 메모리 다수열 발생기를 조합하여 혼합형 수열 발생기를 제안하고, 비도 수준을 분석하였다.
도로상에서 발생되는 교통사고의 많은 부분이 도로의 선형불량에 기인된다. 이러한 도로의 개량설계를 위하여서는 도로의 선형을 정확히 분석할 필요가 있으며, 도로의 설계도와 주요점의 좌표가 필요하게 된다. 따라서, 본 연구에서는 현재 많이 연구되고 있는 인공위성중 RTK GPS/GLONASS의 조합에 의하여 획득된 3차원 자료를 기존 설계도의 제원을 근거로 하여 위치정밀도를 비교하며, 이렇게 재현된 도로의 선형을 평가함으로써 인공위성을 이용한 도로의 선형정보체계를 보다 효율적이고 실용적으로 사용하기 위한 한 접근방법을 제시하고자 한다.
시스템의 적응 제어함수를 산출하는 네트워크인 소뇌모델 선형조합 회로망을 이용한 학습제어 기법은 시스템에 영향을 주는 제어인자들의 불확실성 및 모델링의 결여에도 불구하고 오히려 안정한 실시간 제어의 구현을 가능하게 함으로써 대단한 관심을 불러 일으켜 왔다. 그러나, 센서로부터의 정보처리와 인식 그리고 복잡한 비선형 시스템의 제어에 적용하기에는 회로망 자체의 내재적 문제점들이 여전히 남아있다. 소뇌모델 선형조합 회로망을 기지 또는 미지의 시스템 모델에 효과적으로 적용하기 위해서는 네트워크에 영향을 주는 제어인자가 시스템에 미치는 영향을 분석하는 것이 필수적이다. 분할 블럭의 크기, 학습이득, 입력편이 그리고 입력변수들의 영역과 같은 네트 제어인자들은 시스템의 학습 능률 및 소요 기억용량의 크기에 중대한 영향을 미침에도 불구하고 충분히 조사되지 못한 실태이다. 물론 이들 제어인자들의 결정에는 학습 대상이 되는 시스템 함수의 형태와 적용 학습 알고리즘이 반드시 고려되어야 한다. 본 논문에서는 학습 능률성에 미치는 이들 제어인자들의 상호영향도를 저자가 제안하였던 기본 학습 알고리즘에 의거하여 조사하였다. 분석적인 방법만으로 이러한 상호영향성을 조사하기는 매우 힘들거나 거의 불가능하다고 보아지기 때문에 학습 대상함수를 먼저 규정하여 다양한 컴퓨터 모의시험을 수행하였고 그 결과를 분석하였다. 컴퓨터 모의시험의 결과에 의하여 회로망의 시스템 적용시 고려할 설계 지침을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.