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1. INTRODUCTION

CMLAN(Cerebellum Model Linear Associator
Net) is a schematical approximate modeling of the
memory driven information processing of the cere-
bellum. CMLAN has a simple structured proces-
sing nature of generating output in response to any
continuous or discrete state input. Because of this
fact, CMLAN has been applied to various applica-
tions as a control substitute or a reference input
generator and visual image processor and revealed

its usefulness at various levels in control problems.

So far their applications were based on CMAC(Ce-
rebella Model Arithmetic or Articulated Control-
ler) under the' maximum error correction algor-
tihm which was proposed and analyzed by Albus®
3

Albus™® implemented CMAC module to control
a seven degree of freedom master-slave arm.
CMAC was used in a closed loop control system to
make the slave arm follow a specific trajectory. The
trajectory was trained by the feedback from the
movement of the master arm. CMAC was used to

control a two degree of freedom biped walking de-

* OERHREE KERT BRI TR
*r BBIARE MR TR



BEREEMEEEE 515 $ 39 19904 9 A

vice by Camana®. Three degree of freedom planar
manipulator was trained to follow a trajectory to
avoid collisions under a fixed static obstacle by Ra-
jadhyaksha”. Reference trajectories were genera-
ted manully using a stylus and trained iteratively.

An adaptive hierarchical model for two dimen-
sional computer vision was simulated using CMAC
by Manglevdakar®. Three hierarchical levels based
on the segmentation were implemented to analyze
the image formed from a digitizer tablet.

Miller® applied CMAC to position the manipula-
tor with visual feedback by training on-line obser-
vations of the input-output relationship of the sys-
tem being controlled. Learning parameters were
chosen on an ad hoc basis. CMAC based control of
a two degree of freedom articulated robot arm was
performed for the simulated repetitive and non-re-
petitive movements by Miller et al"®. The control
activity of CMAC in conjunction with a fixed-gain
linear feedback controller was tested. A simulated
learning of a manipulator was performed every one
cycle of trajectory trace using on-line information
based on the Albus’s maximum error correction
training.

Unfortunately, those previous CMAC applica-
tions have been done without fully analyzing net
intself and feasible learning algorithms in detail. As
mentioned in Part I, since CMAC works similar to
the linear asociator net which is one of well known
models of Neural Net, instead of CMAC, CMLAN
is more proper name of the net considering its cha-
racteristics. In Part I, the detailed anaysis on the
structure and function of CMLAN has been done
and three basic learning rules such as a batch type
accumulated sequential error learning, on-line type
direct sequential error learning, and the uniformly
distributed random error learning have been pro-
posed and verified to be far more efficient over the
conventional maximum error learning.

Various artificial neuro-nets have been devloped

via modeling the structural and functional charac-

teristics of human brain in the hope of achieving
highly adaptive and sophisticated information pro-
cessing with high rate of computing™ ™2, It should
be noted that researches on how to apply those de-
veloped neuro-nets as a tool properly to the various
engineering problems are hot issues as well. Every
enginerring application requires the proper mana-
gement of system parameters and the modification
of the net structure such as connection of nodes
and layers including net and system control para-
meters.

In this paper, using the previously mentioned
learning algorithms in Part I, a nonlinear function
geneartor and a motion generator for a two d.of.
manipulator were simulated. Trained results were
compared using the rms and maximum errors over
the sampled input nodes for the equivalent lear-
ning period. The rms and maximum errors over
the extended input nodes were also compared to
show the generalizing effect of each learning. The
uniform quantizing scheme mentioned earlier was

applied.
2. Nonlinear Function Generator

A nonlinear function, P=sin(x) sin(y) (fig. 1)
was trained with input ranges of 0<x<360 and o
<¥<180(deg) using the batch type SEC(G=0.5),
on-line type SEC(G=0.8), MEC(G=0.8), and
REC(G=04) learnings. The interval of sampled
input nodes was 15 degrees resulting 325 pairs of
inputs. The offset of CMLAN input space was 1 de-
gree and K was equal to 30. The learning gain of
the batch type SEC was selected from the scheme
presented in part I,

The measured cpu times were 3.83 seconds and
4.44 seconds per learning epoch for batch and on-
line type SEC learnings respectively. It took 2.62
seconds per epoch and 0.012 seconds per each ran-
dom learning for MEC and REC respectively. The

rms and maximum errors were compared over the
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sampled input nodes and the extended input nodes
of 3 degree interval (including untrained nodes)
and those are shown in fig. 2 and fig. 3. Note that
the trained performance of each learning has been
scaled based on the cup time elapsed. Total learned
cpu time can be obtained by simply multiplying cpu
time per epoch for the SEC and MEC learning and
cpu time per each learning for the REC learnings.
Remember that the batch type SEC learning and
MEC learning execute a process of learning actua-

lly once per epoch.

X

Fig. 1. A nonlinear function to be trained P=sin
() sin(y) with 0<x<360 and 0<y<180
(deg).
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Fig. 2. The performance using various learning
over sampled input nodes : (a) rms error,
(b) maximum error (Sampled interval=15
deg, Batch SEC : G=0.5, On-line SEC : G
=(.8, MEC : G=0.8, REC : G=04).
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val=3 deg, Batch SEC: G=0.5, On-line
SEC : G=0.8, MEC: G=0.8, REC : G=0.
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The SEC and REC learnings showed the excel-
lent error fitting on the sampled input nodes. Ho-
wever, they show rather poor results on the overall
node space sampled by 3 degree. This reveals their
linear interpolating effect on the intermediate unt-
rained notes, which are connected as nonlinear su-
rface.

Maximum and rms error have almost same tre-
nds as the number of training epoch increases. The
rms error oscillates in the REC and MEC learnings
as learning number increases although it is not
shown clearly in fig. 2. The REC learning shows a
rather large oscillating behavior in maximum error
because of its randomly selected correction without
considering the slope of overall error surface. The
MEC learning shows the worst learned rms error
performance and the oscillating behavior in maxi-
mum error even it corrects the selected node of
maximum error at each epoch.

By comparing CMLAN results with those of the
learning simulations for the similar two dimensio-
nal Gaussian surface performed by Pao"® using the
functional link net and the generalized back propa-
gation delta rule™ ™%, the power of CMLAN is no-
ticeable. The functional link net does a similar ma-
pping of the input state vector as CMLAN does by
utilizing the functional expansion and outer pro-

duct pattern enhancement, which allows to use a
flat net architecture for learning a desired function.
Instead, CMLAN automatically generates an input

pattern enhancement by its unique structured ma-

pping.

3. JOINT MOVEMENT OF TWO DOF
MANIPULATOR

Two d.of. planar manipulator with a length of
arm one 400mm and arm two 300mm was trained
to move from the specified initial arm state to the

target point in the work space by training the re-
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quired joint movements directly. The initial arm

configuration was set such that 8, =~n/4 rad and 6,

—n/4 rad. Since two different arm configura-
tions exist for every target point, the final arm con-
figuration and the entire joint movements were de-
termined from the initial joint states and the loca-
tion of the farget shown in fig. 4.

The CMLAN input space is the work space of
the manipulator and was defined by two inputs
using polar variables, » =(300, 700) in mm unit and
¢ =(—150, 150) in degree unit. Fig. 5 shows confi-
gurations of twe separated desired delta joint mo-
vements from the initial states, which CMLAN
should learn, and aspects of discontinuity caused
by two different desired arm patterns.

Two separate sets of the CMLAN weights with
a common input space were trained to handle dis-
continuity caused by two different target configu-
rations. Each CMLAN set has two sub-CMLAN
joint movement controllers resulting in one CM-
LAN input and two CMLAN trained outputs. Four
differnt learnings such as batch SEC(G=0.05), on-
line SEC(G=0.8), MEC{G=0.6), and REC(G=0.
6), and REC(G=0.6) were applied for the equiva-
lent training period.

The measured cup times on VAX 11/750 were
23.1 seconds and 24.8 seconds per learning epoch
for batch and on-line type SEC learnings respecti-
vely. It took 15.18 seconds'per epoch and 0.074 se-
conds per each random learning for MEC and REC
respectively. The quantizing valpe K and the offset
of the CMLAN input space were set to be 150 and
1. The interval of the sampled input nodes were 20
mm and 20 degrees resulting in 336 input pairs.

The rms and maximum errors were obtained
from the joint and world spaces and are shown in
fig. 6 and fig. 7 respectively. In the joint space, the
rms and maximum errors were computed from the
combined erros in jeint one and joint two. In the
world space, those are computed based on the Eu-

clidian distance. The initial rms and the maximum
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Fig. 5. Joint movements to be trained with 300<7
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Fig. 6. The performance in joint space using va-
rious learnings over sampled input nodes :
(2) rms error, (b) maximum error (Samp-
led interval=20 deg and 20 mm, Batch
SEC : G=0.05, On-line SEC:G=038,
MEC : G=0.6, REC : G=0.4).

1.00E+04

1.00E+03

1LOOE+02

1.00E +01

100E—00

MAX. ERROR

100E—01

1.00E—02

1.00E -03

TRAIN NO. (B :X10,S: X9, M :Xi5 R X3000)

(a) rms error



IR TR ek 5 15 % 5.3 3% 1990 4 9 A

LOOE+03
LOOE+02
1L0GE+0]
100E~-00 -(

LOOE—01 ~

RM.S. ERROR

100E—02 -

100E—03 -

SE.
LOOE— 04 =T

A Pl
TRAIN NO. (B : X10,S : X8, M : X15, R © X3000)

(b) maximum error

Fig. 7. The performance in world space using va-
rious learnings over sampled input nodes -
(a) rms error, (b) maximum error (Samp-
led interval=20 deg and 20 mm, Batch
SEC : G=0.05, On-line SEC:G=03,
MEC : G=0.6, REC : G=06).

errors in the joint space were 85.07 deg and 141.5
deg, respectively. And in the world space, 782.7
mm and 1347 mm. The learned results from each

learning scheme are shown in table 1.

The oscillating behavior of the rms error occurs
in the batch SEC in the world space at the early
stage although it is not shown clearly in Fig.7. The
réason is mainly due to the unmatched relation of
converging directions between the joint space and
the world space.

The SEC and REC learnings exhibit the excel-
lent trained performance while the MEC shows a
poor result as expected. However, if the input pairs
are increased, the required training cpu time will
be the problem as mentioned earlier as a restric-

tion of the SEC learnings.

Table 1. List of errors on each learning scheme (unit : deg and mm)

Error Aleorithm BSE;;Zh Olslélge MEC REC
RMS Joint 9.08E —2 354E—5 549E—1 6.72E—5
World 8.24E—1 3.96E—4 445E—0 6.32E—4
MAX Joint 6.27E—1 1.12E—4 793E—1 2.27E—4
World 479E—0 148E—3 L17E+1 240E—3

Robot inverse kinematic control problem has
been also attempted to solve by applying or modif-
ying the well-known multi-layer network under the
generalized back-propagation(BP) delta-rule®~!7,
Trained results from BP are relatively poor com-
pared to the results presented in this paper though
they require a smaller memory requirement. For
instance, Guez® stated the BP trained results of
two d.o.f manipulator was not adequate as a substi-
tute for the closed form inverse kinematic solution
because of the too much discrepancies. However,
CMLAN based results under on-line SEC learning
showed the maximum joint error of 1.12E—4 deg-
ree and the maximum workspace error of 148E—3

mm over the sampled nodes, which are good

enough to be applied for a direct substitute. Besi-
des, as the price of memory gets cheaper, the capa-
city of system memory is not a serious problem to

a certain degree.

4. CONCLUSION

CMLAN is a kind of one-layer linear associator
with a linear activation function having linearly in-
dependent binary pattern vector inputs. With pro-
per number of sampled input node inputs, CMLAN
can learn the desired nonlinear system behavior
arbitrarily closely. The performance of the CMLAN
based learning was quite good enough to imple-

ment the memory driven control system beacause

— 204 —
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of the enormously small size of the required sys-
tem memory compared to the normal table look-up
type storage.

As it is expected, CMLAN successfully generates
the proper desired functional values to the nonli-
near multi-variable function and to the joint com-
mands of inverse kinematic motion without any
prior knowledge in system modeling. Two d.o.f. in-
verse kinematic problem can be easily extended to
six or more d.o.f. problem by increasing sub-CM-
LAN corresponding to each joint. Discontinuity can
be handled by constructing two separate sets of
CMLAN structures with suitable descision making
net. Decision making can be done using an ordi-
nary back-propagation net or CMLAN by utilizing
a sigmoid type nonlinear activation function instead
of unity activation function.

The presented results of the CMLAN analysis on
learning will accellerate and extend its engineering
application to the various fields especially for the
system of the interest having a difficulty in its pre-
cise modeling, for the control system requiring the
real time adaptation, and for the information pro-
cessing like sensor fusion from the vision and
other instruments readings. Application of CMLAN
toward the visual image recognition and obstacle
avoidance is undergone by the authors.

Since the effects of the control parameters on
the CMLAN learning algorithm are critical, inter-
relations between these parameters and the shapes
of the system function to be trained should be in-
vestigated with its learning performance. In the
case that the unknown desired relations between
the input and output are to be trained, it is desira-
ble to set a certain guideline for the application of
the CMLAN. Results of research performed rela-
ted to the CMLAN design guide toward the effi-
cient CMLAN application will be presented later.
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