• Title/Summary/Keyword: 선박운동

Search Result 412, Processing Time 0.024 seconds

Development for the Azimuth Measurement Algorithm using Multi Sensor Fusion Method (멀티센서 퓨전 기법을 활용한 방위 측정 알고리즘의 설계)

  • Kim, Tae-Yeong;Kim, Young-Chul;Song, Moon-Kyou;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.865-871
    • /
    • 2011
  • Presently, the location and direction information are certainly needed for the autonomous vehicle of the ship. Among them, the direction information is a essential elements to automatic steering system. And the gyro-compass, the magnetic-compass and the GPS compass are the sensor indicating the direction. The gyro-compasses are mainly used in the large-sized ship of the GMDSS(Global Maritime Distress & Safety System). The precision and the reliability of the gyro-compasses are excellent but big volume and high price are disadvantage. The magnetic-compass has relatively fine precision and inexpensive price. However, the disadvantage is in the influence by the magnetism object including the steel structure of a ship, and etc. In the case of the GPS compass, the true north is indicated according to the change of the location information but in case of the minimum number of satellites or stopping of a ship or exercise in the error range, the exact direction cannot be obtained. In this paper, the performance of the GPS compass was improved by using the least-square curve fitting method for the mutual trade off of the angle sensor. The algorithm which improves the precision of an azimuth by applying the weighted value according to the size of covariance error was proposed with GPS-compass and magnetic compass. The characteristic and the performance of the proposed algorithm were analyzed and verified through experimentation. The applicability of the proposed algorithm was shown through the experimental result.

A Study on the Dynamic Strength Analysis of the Hull Girder Among Waves Considering Non-Linear Hydrodynamic forces (선박의 비선형 유체력을 고려한 파랑중 동적 강도 해석법에 관한 연구)

  • Ku-Kyun Shin;Sa-Soo Kim;Sung-Wan Son
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.152-172
    • /
    • 1992
  • The ship sailing among waves are suffered the various wave loads that comes from its motion throughout its life. Because there are dynamic, the analysis of ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship mouton calculation as the rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, relatively ship's depth, is induced the large ship motion, so the ship section configulation below water line is rapidly changed at each time. This results in non-linear problem. Considering above situation in this paper, the strength analysis method is introduced for the hull glider among waves considering non-linear hydrodynamic forces. This paper considers that the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom and bow flare impact forces estimated by momentum slamming theory, in which the ship is idealized as a hollow thin-walled box beam using thin-walled beam theory and the finite element method. This method is applied to 40,000 Ton Double-Skin Tanker and attention is paid to the influence of the response of ship speed, wave length and wave height compared with linear strip theory.

  • PDF

A Study on the Proper Crown Height of GT 100,000Ton Cruise ship and DWT 100,000Ton Container ship (10만톤급 크루즈선과 컨테이너선의 적정 마루높이에 관한 연구)

  • Kim, Seungyeon;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.157-162
    • /
    • 2018
  • The increase of risk in port due to the increase in ship size and sea level rises, the standard crown height will increase. In this study, cruise and container ships will need to raise their crown height due to the projected wind pressure areas becoming larger due to the ships' size increase. The mooring assessment was evaluated with the rise of the crown height. The cruise ship of GT 100,000 tons exceeded the permissible breaking force of the mooring line under the crown height conditions of wind speed of 30 kts when the wind direction was $45^{\circ}$ to the direction of the bow. Also, the elevation angle of the pier and mooring line was analyzed and exceeded the crown height, and it was determined that it is necessary to adjust the crown height. Container ships of DWT 100,000 tons were analyzed to exceed the limit of sway motion at the crown height and it was determined that they need to be adjusted to the minimum crown height standard.

A Study on Viscous Damping System of a Ship with Anti-Rolling Pendulum (안티롤링 진자를 장치한 선박의 점성감쇠계 해석에 대한 연구)

  • Park, Sok-Chu;Jang, Kwang-Ho;Yi, Geum-Joo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.365-372
    • /
    • 2017
  • The rolling motion of a floating body makes crews and passengers exhausted and/or applies forces to the structure to cause damage; it might even upset the body. Therefore, almost all ships are equipped with bilge keels for anti-rolling; in special cases, an anti-rolling tank(ART) or fin stabilizer or gyroscope could be installed. But an ART requires a large capacity to install it, and a fin stabilizer and gyroscope need great costs to install and also many expenses to operate. The authors suggest the use of an anti-rolling pendulum(ARP), and they showed that the ARP is effective to reduce rolling by experiments and via a Runge-Kutta analysis. This paper introduces the linearized 2 degrees of freedom with a viscous damping system for a ship equipped with ARP; it also shows the validation of the linearized analysis for the ship's roll motion. The paper proposes an optimum ARP on the basis of the justified model. The case of the 7.7kg model with ship 20g ARP of a mass ratio of 0.26%, is the most effective for reducing roll motion. The paper shows the ARPs with various mass ratios are effective for reducing the roll motion of a ship by free decaying roll experiments.

Offshore Platform Installation Simulation Using Real-Time Maneuvering and Operation Simulator (Real-Time 조종 및 작업 시뮬레이터를 활용한 해양구조물 설치 작업 시뮬레이션)

  • Jonghyeon Lee;Solyoung Han;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.67-75
    • /
    • 2023
  • In this study, the dynamic characteristics of an offshore platform being installed and physical phenomena are analyzed from the perspective of interaction between operation and maneuvering simulation using a real-time Maneuvering & Operation simulator of Shipbuilding & Marine Simulation Center at Tongmyong University. It was simulated to install the semi-submersible drilling rig moored by 8 mooring lines according to a scenario that is similar to it on the real sea, and 4 tug boats for position keeping of the rig and an offshore support vessel for hook-up of the mooring lines were operated. During the simulation, the motion, trajectory, tension of the objects were output in real time, and they were analyzed at each work procedure. This study about the simultaneous simulation of operation and maneuvering showed the detailed motion of the offshore platform and ships on the operation procedure and the interaction between operation and maneuvering in specific environment condition. Also, it confirmed that the simulation can be utilized to determine the possibility of offshore platform installation in specific situations.

The Virtual Review System for Car Interior/Exterior Design Review (자동차 내.외관 품평을 위한 가상 디자인 품평 시스템)

  • Ghyme, Sang-Won;Shin, Seon-Hyung;Son, Wook-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1069-1074
    • /
    • 2006
  • 자동차/선박/정보통신기기 등의 각종 제조 산업 분야에서 신제품 개발기간과 비용단축을 위해 제품의 설계/스타일링 단계에서 디자인 및 사용자 사용성/편이성 등에 대해 가상으로 품평하는 기술에 대한 관심이 날로 증가하고 있다. 이상적인 가상 품평 기술은 사용자가 실물에 대한 품평 상황과 동일한 체험을 얻을 수 있도록 해야 한다. 이를 위해서 품평 대상물을 사실적으로 표현할 수 있도록 하는 실사 수준의 고품질 가시화 기술과 사용자가 품평 대상물을 자연스럽게 조작할 수 있는 상호작용 기술이 필요하다. 본 연구는 자동차의 내 외관 디자인 품평을 위한 가상 디자인 품평 시스템의 개발에 관한 것으로, 사실적인 자동차 가시화를 위한 환경 반사, 빛 산란, 범프 매핑등의 고품질 쉐이더 구현 및 저작 기술, 몰입환경에서 품평 작업을 위한 3D GUI 지원, 자동차 각 부품의 사용성/편이성 평가를 위한 운동성 조작 기능, 멀티프로젝션 디스플레이 시스템 및 3 차원 인간 모델, 장갑형 입력장치 지원을 통한 몰입형 가상 품평 환경 구축에 관한 기술 및 구현 방법을 제시하고자 한다.

  • PDF

3D Digital Mockup Application of Cryogenic Butterfly Valve, LNG Carrier (DMU(Digital Mockup) 기법을 적용한 LNG 선박용 극저온 버터플라이 밸브 설계의 우수성 검증)

  • Lee, Dong-Hun;Kim, Duck-Eun;Kim, Soo-Young;Park, Gy-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.611-618
    • /
    • 2006
  • Recently, cryogenic butterfly valves for LNG carriers are actively developed by ship equipment companies. The dual core structure unlike usual butterfly valve has both translation and gyration motions of the disk of the valve assembly. Especially, the ship equipment companies can not have overcome 2D design method; in addition, even though 2 years of development has passed, the drawing cannot be secured. In this research, for the cryogenic butterfly valves and the product design, 3D design method was introduced and DMU(Digital Mockup) was applied to complement the problems in 2D design and investigate application possibility of 3D design method.

Prediction of Extreme Ship Motions in Following and Quartering Seas (선미파, 선미사파를 받는 선박의 과도 운동 추정에 대한 연구)

  • Kwon, Chang-Seop;Yeo, Dong-Jin;Rhee, Key-Pyo;Yoon, Sang-Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.1-7
    • /
    • 2007
  • Recently, researches to find rational mathematical model for prediction of capsizing have been progressed by ITTC. Lee(1997) developed a mathematical model which describes 6 DOF transient motions, such as capsizing, of a ship in regular waves. In this study a mathematical model for prediction of capsizing in following and quartering seas is developed based on Lee's model. And factors affecting prediction of capsizing are analyzed through comparing simulation results with experimental results. Present simulation results are compared with ITTC bench mark test results. In rolling tests with beam seas and tree runs with stern quartering seas, capsizing events are predicted well. But calculated roll angle is larger than experimental one. It is found that nonlinear manoeuvring coefficients don't affect the prediction of capsizing events.

Whipping analysis of hull girders considering slamming impact loads (슬래밍 충격하중을 고려한 선체 휘핑 해석)

  • Seong-Whan Park;Keun-Bae Lee;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.99-109
    • /
    • 2000
  • Elastic dynamic responses analysis program for ship hulls considering slamming impact loads due to the voyage in large amplitude waves is developed. Ship hull structures are modeled by a thin-walled beam model in order to consider effects of shear deformation. The momentum slamming theory is used to derive nonlinear hydrodynamic forces considering intersection between wave particles and ship section. For the validation of the developed computer program, motions of a V-shaped simple section model and S-175 standard container model are calculated and analyzed. In each numerical example, time histories of relative displacement, velocity and vertical bending moment of a ship section are derived, considering the effect of slamming impacts in various wave conditions.ures near the free surface as well as the wake of the hydrofoil.

  • PDF

Rolling Reduction of Floating body by Anti-Rolling Pendulum (안티롤링 추를 이용한 부유체의 롤링 저감)

  • Park, Sok-Chu;Park, Kyung-Il;Yi, Geum-Joo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.106-107
    • /
    • 2016
  • Rolling motion of floating body might upset the body, make crews and passengers exhausted and/or apply forces to the structure to cause damage. Therefore for almost ships bilge keels are equipped, in special case fin stabilizer or gyroscope may be installed. This paper suggests the Anti-rolling pendulum to reduce roll motion to act the similar role with anti-rolling tank. The device suggested has more effective than the anti-rolling tank with 1/6 volume of the tank.

  • PDF