• Title/Summary/Keyword: 선박안정성

Search Result 340, Processing Time 0.031 seconds

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

Laboratory Experiments for Evaluating Dynamic Response of Small-scaled Circular Steel Pipe (실내 실험을 통한 소형 모형 원형 강관의 동적 반응 평가)

  • Song, Jung Uk;Lee, Jong-Sub;Park, Min-Chul;Byun, Yong-Hoon;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.81-92
    • /
    • 2018
  • For a marine bridge foundation construction, a large-circular-steel-pipe has been proposed for supporting vertical load and preventing water infiltration. However, a ship collision can adversely affect the structural stability. This paper presents a fundamental study on dynamic responses of the large-circular-steel-pipe by an impact load. In laboratory experiments, small-scaled steel pipe is installed in a soil tank. The soil height and water level are set to 23 cm and 25~70 cm, respectively. The upper part of the steel pipe is impacted using a hammer to simulate the ship collision. The dynamic responses are measured using accelerometers and strain gauges. Experimental results show that the strain decreases as the measured location is lowered. The higher frequency components appear in the impact load condition compared to the microtremor condition. However, the higher frequency components measured at the strain gauge located below the water level do not appear. For the accelerometer signal, the maximum frequency under the impact load is higher than that of the microtremor. The maximum frequency decreases as water level increases but it is larger than the maximum frequency of the microtremor. This study shows that strain gauge and accelerometer can be useful for evaluating the dynamic responses of large-circular-steel-pipes.

Study on Volterra System for Variation of Metacentric Height in Waves and its Application to Analysis of Parametric Roll (볼테라 시스템을 이용한 파랑 중 파라메트릭 횡동요에 대한 연구)

  • Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.227-241
    • /
    • 2017
  • In this study, a Volterra system for the variations of metacentric height (GM) in waves is employed to simulate the parametric roll phenomena of ships in head sea condition. Using the present Volterra system, the transfer function of each harmonic component in the GM variation is computed for different ship models, including mathematical models and a real containership, and the results are validated through the comparison with the values obtained using the direct calculations based on a weakly nonlinear time-domain method. Then, a semi-analytic approach employing a 1-degree of freedom equation for roll motion is developed to simulate the parametric roll motions in irregular waves. In the derived approach, the nonlinear and time-varying restoring forces in the waves are approximated using the Volterra system. Through simulations of the parametric roll for different sea states, the effects of the 1st and 2nd-order harmonic components of the variations in the occurrence and amplitude of the parametric roll motions are investigated. Because of the strong nonlinearities in the phenomena, a stochastic analysis is conducted to examine the statistical properties of the roll motions in consideration of the sensitivities and uncertainties in the computations.

Submarine Cable Installation and Protection Methods according as Characteristics of Ocean Environment (해양환경특성에 따른 해저케이블 설치 및 보호방안)

  • Ahn, Seung-Hwan;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • The burial method has been generally used for the protection methods of submarine cable. Especially in Korea, various types of protection methods have been used according to fisheries and fishing implements. In these days, all the protection methods - burial, continuous concrete mattress, cast iron pipes, U-duct, concrete bags, rock berm, mortar bags and FCM(Flexible Concrete Mattress) are applied to the submarine cable, but these methods just focus not on the characteristics of ocean environment and the protection of environment but on the safety of submarine cable against the external damages. This research presents the protection methods of submarine cable according as the characteristics of ocean environment - external damages, depth of water, seabed condition and the protection of environment.

  • PDF

Study on the Development of Social Evaluation Model for Aids to Navigation Accident (항로표지사고의 사회적비용 평가모델 개발에 관한 연구(I))

  • Moon, Beom-Sik;Gug, Seung-Gi;Lee, Young-Tae
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.187-194
    • /
    • 2018
  • Aids to Navigation (AtoN) is a marine traffic safety facility used to facilitate the safe and efficient movement of shipping and enhance the protection of the marine environment by the regulations or guidelines of The International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA). Our country is managing AtoN to provide consistent services for AtoN users, although an average of 141 AtoN accidents occur annually. An AtoN accident forces non-planned work on the managers to resort the function, and causes psychological anxiety for its users, ultimately resulting in economic losses. This study developed the Social Cost evaluation model of AtoN accidents. The model can be used to quantify the manager's economic activities related to the shutdown and recovery, as well as the cost associated with the inconvenience to AtoN users. The Social Cost evaluation model of AtoN accidents is proposed as the sum of the encounter cost, administration cost and risk cost.

A Study on the Sloshing Reduction of a Cargo Fuel Tank with Baffle (배플을 적용한 Cargo용 연료탱크 내부의 슬로싱 저감 연구)

  • Yoon, Bo-Hyun;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1074-1083
    • /
    • 2010
  • Recently sloshing that fluid in fuel tank is undulating by the external force during motion of automobile, ship and aircraft is greatly affecting by damaging the inside of structure. It's most important to precisely analyze the behavior of fluid by computational fluid dynamics for minimizing the effect of sloshing for the loaded fuel. This study characterized volume of fluid and pressure according to the length and number of vertical baffle and horizontal baffle in fuel tank for Kia Frontier cargo and analyzed for reduction of sloshing during driving on corner and hill by using ADINA-CFD. As a result of analysis, the optimum length for sloshing reduction shows 0.19 m for vertical baffle and 0.08 m for horizontal baffle. And it shows that vertical baffle is better for the reduction effect of sloshing during driving on corners, on the other hand, horizontal baffle is effective and stable during driving on hills.

Shape Optimization of Impeller Blades for Bidirectional Axial Flow Pump (양방향 축류펌프용 임펠러 블레이드의 형상최적설계)

  • Baek, Seok Heum;Jung, Won Hyuk;Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1141-1150
    • /
    • 2012
  • This paper describes the shape optimization of impeller blades for an anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has efficiency much lower than that of a classical unidirectional pump because of the symmetry of the blade type. In this study, by focusing on a pump impeller, the shape of the blades is redesigned to develop a bidirectional axial pump with higher efficiency. The commercial code employed in this simulation is CFX v.13. The CFD result of the pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate-model-based optimization using orthogonal polynomials are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable for impeller blades and explain the optimal solution as well as the usefulness of satisfying the constraints of the pump torque and head.

A Study on the Hole-Plan system combined with 3D CAD (3차원 CAD 통합형 홀 플랜 시스템에 관한 연구)

  • Ruy, Won-Sun;Yu, Yun-Sik;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • It is necessary to construct the process automation system to improve the design efficiency and procure the higher design quality on the field of ship building. To construct this system, the shipbuilding companies should improve the 3D CAD/CAM system customized to the ship design and the software about design information management which could solve the conflict problem between the several related design division at the same time. The typical example is the Hole-plan process in the ship-building design. For the request of additional holes from outfitting division, the hull design division checks the compatibility conditions and reflects these holes to the hull panels if acceptable. if not, the requests are rejected and sent back to the outfitting division. These serial processes are not simple and require the tedious communication, discussion, and the complicated drawings. This article gives a basic introduction to the process of hole-plan system and proposes a strategy to automate its process.

A Study on the Analysis of Interference Probability between Radio devices for Intra-wireless fishing boat communications (Intra-wireless 어선통신용 무선기기간 간섭확률분석에 관한 연구)

  • Kim, Keun-O;Park, Gye-Kack;Cho, Ju-Phil;Cha, Jae-Sang;Lee, Min-Ho;Kim, Ji-Hyung;Lee, Jung-Hoon;Kim, Seong-Kweon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.243-246
    • /
    • 2008
  • ISM(Industrial, Scientific, Medical)대역은 비면허 대역으로 일정한 출력 규제만 지키면 자유롭게 사용할 수 있다는 장점으로 인하여 육상 통신뿐만 아니라 해상 통신 영역까지 그 사용량이 급증하고 있다. 이에 어선 내에서 사용하는 전파응용설비 및 ISM대역을 사용하는 소출력무선기기 등과의 전파간섭 문제는 시스템의 안정성을 열화시킬 수 있는 요인이 되며, 선박상황을 고려하면 안전성과 직결되므로, 간과되지 말아야 한다. 따라서 ISM대역에서 사용되거나 사용될 무선설비의 간섭확률 분석은 필수적이다. 본 논문에서는 Monte-Carlo 방식을 기반으로 하는 SEAMCAT를 이용하여 거리 및 밀도에 따른 간섭 시나리오와 전파 간섭 simulation methodology를 제안하였으며, 해상에서 환경을 가정하여 다른 전파간섭을 배제하였다. 제안된 시나리오를 적용하여 13.56MHz ISM 대역의 거리 시나리오 시뮬레이션 결과 RFID는 4.7m 이상, 모형기기는 2.7m 이상의 동종 기기간 이격거리를 가질 경우 간섭 영향이 양호하였다. 밀도 시나리오 시뮬레이션 결과 RFID(${V_r}$)를 중심으로 간섭 영향권에 RFID와 모형기기가 각각 2개 이하, 모형기기(${V_r}$)를 중심으로 간섭 영향권에 모형기기 2개 이하, RFID 1개 이하로 사용될 경우 통신환경이 양호함을 알 수 있었다. 제안된 간섭 시나리오 및 시뮬레이션 기법은 향후 ISM대역의 규제 정책 및 간섭확률 분석에 기여할 것으로 기대된다.

  • PDF

On the Evaluation of the dynamic Safety of the Ship's Cargo at Sea (항해중 선박 적재화물의 동적 안정성 평가에 관한 연구)

  • 김철승;김순갑
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.33-49
    • /
    • 1997
  • One of the most important missons that are imposed on merchant ship at sea is to accomplish the safe transportation of cargo loaded. Recently, a study on the seakeeping performance has been carried out on the development of evaluation system related to the synthetic safety of a ship at sea. The seakeeping performance is the ship's ability sailing at, and executing its misson against adverse environmental factors successfully and safely. Until now, however, there has not been any method of quantitative evaluation on the dynamic safety of the ship's cargo loaded. In this regards, this paper has introduced the evaluation method of dynamic safety of the ship's cargo. In order to evaluate the dynamic safety of cargo, the vertical and lateral acceleration which causes the collapse, racking and local structure failure of cargo was adopted as the evaluation factors in the ship's motions. The response amplitude of ship's motions in regular waves is manipulated by NSM (New Strip Method) on a given 2,700 TEU full container vessel under the wind forces of 7, 8 and 9 Beaufort scale. Each response of ship's motions induced by NSM was applied to short-crested irregular waves for stochastic process on evaluation factors and then vertical and lateral acceleration of each cargo was compared with significant amplitude of each acceleration. A representative dangerous factor was determined by comparing permissible values of stacking and racking forces occurred typically to the vertical and transverse directions with the container strength required on ISO 1496 at the positions of forecastle, poop and ship's midship respectively. Through the occurrence probability of the determined factor by Rayleigh's probability density function, the dangerousness which limits loads on container's side wall as an evaluation was applied in judging of the danger of the ship's cargo loaded.

  • PDF