DOI QR코드

DOI QR Code

Shape Optimization of Impeller Blades for Bidirectional Axial Flow Pump

양방향 축류펌프용 임펠러 블레이드의 형상최적설계

  • 백석흠 (동아대학교 기계공학과) ;
  • 정원혁 (디엔디이(주) CFD Multi-1 사업팀) ;
  • 강상모 (동아대학교 기계공학과)
  • Received : 2012.02.28
  • Accepted : 2012.09.10
  • Published : 2012.12.01

Abstract

This paper describes the shape optimization of impeller blades for an anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has efficiency much lower than that of a classical unidirectional pump because of the symmetry of the blade type. In this study, by focusing on a pump impeller, the shape of the blades is redesigned to develop a bidirectional axial pump with higher efficiency. The commercial code employed in this simulation is CFX v.13. The CFD result of the pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate-model-based optimization using orthogonal polynomials are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable for impeller blades and explain the optimal solution as well as the usefulness of satisfying the constraints of the pump torque and head.

이 논문은 선박에서 자세 안정용 양방향 축류펌프에 대한 임펠러 블레이드의 형상최적설계를 설명한 것이다. 양방향 축류펌프용 블레이드는 대칭형 익형을 사용하므로 효율이 기존의 단방향 축류펌프보다 낮다. 이러한 양방향 축류펌프의 단점을 최소화 하고 효율을 증가시키기 위해 최적설계기법을 사용하였다. 양방향 축류펌프의 성능 개선을 위해 상용 CFD 프로그램인 ANSYS CFX v.13 을 이용하여 유동해석을 수행하였다. 직교배열표, 분산분석과 직교다항식을 이용한 대리모델기반 최적설계방법은 최적 설계변수를 결정하고 주효과를 찾는데 사용하였다. 최적설계 결과로부터, 임펠러 블레이드의 유효한 설계변수를 확인하고 이의 최적해와 설계요구조건 만족에 대한 유용성을 설명하였다.

Keywords

References

  1. Cao, S., Peng, G. and Yu, Z., 2005, "Hydrodynamic Design of Rotodynamic Pump Impeller for Multiphase Pumping by Combined Approach of Inverse Design and CFD Analysis," ASME J. Fluids Eng., Vol. 127, No. 2, pp. 330-338. https://doi.org/10.1115/1.1881697
  2. Ding, H., Visser, F. C. and Jiang, Y., 2011, "Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications," ASME J. Fluids Eng., Vol. 133, No. 1, pp. 011101(1-14). https://doi.org/10.1115/1.4003196
  3. Stepanoff, A.J., 1957, Centrifugal and Axial Flow Pumps, John Wiley.
  4. Neumann, B., 1991, The Interaction between Geometry and Performance of a Centrifugal Pump, Mechanical Engineering Publications Ltd.
  5. Kumaresan, T. and Joshi, J. B., 2006, "Effect of Impeller Design on the Flow Pattern and Mixing in Stirred Tanks," Comput. Fluids, Vol. 115, No. 3, pp. 173-193.
  6. Anagnostopoulos, J. S., 2009, "A Fast Numerical Method for Flow Analysis and Blade Design in Centrifugal Pump Impellers," Comput. Fluids, Vol. 38, No. 2, pp. 284-289. https://doi.org/10.1016/j.compfluid.2008.02.010
  7. Lee, Y. B., Lee, H. J., Kim, M. S. and Choi, D. H., 2005, "Sequential Approximate Optimization Based on a Pure Quadratic Response Surface Method with Noise Filtering," Trans. of the KSME (A), Vol. 29, No. 6, pp. 842-851. https://doi.org/10.3795/KSME-A.2005.29.6.842
  8. Baek, S. H., Kim, K. M., Cho, S. S., Jang, D. Y. and Joo, W. S., 2009, "A Sequential Optimization Algorithm Using Metamodel-Based Multilevel Analysis," Trans. of the KSME (A), Vol. 33, No. 9, pp. 892-902. https://doi.org/10.3795/KSME-A.2009.33.9.892
  9. Queipo, N. V., Verde, A., Pintos, S. and Haftka, R. T., 2009, "Assessing the Value of Another Cycle in Gaussian Process Surrogate-based Optimization," Struct. Multidisc. Optim., Vol. 39, No. 4, pp. 459-475 https://doi.org/10.1007/s00158-008-0346-0
  10. Yu, Q, Koizumi, N., Yajima, H. and Shiratori, M., 2001, "Optimum Design of Vehicle Frontal Structure and Occupant Restraint System for Crashworthiness (A Multilevel Approach Using SDSS)," JSME Int. J. Ser A, Solid Mech Mater Eng, Vol. 44, No. 4, pp. 594-601. https://doi.org/10.1299/jsmea.44.594
  11. Baek, S. H., Cho, S. S., Kim, H. S. and Joo, W. S., 2006, "Tarde-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials," J. Mech. Sci. Technol., Vol. 20, No. 3, pp. 366-375. https://doi.org/10.1007/BF02917519
  12. Baek, S. H., Cho, S. S. and Joo, W. S., 2009, "Response Surface Approximation for Fatigue Life Prediction and Its Application to Multi-Criteria Optimization With a Priori Preference Information," Trans. of the KSME (A), Vol. 33, No. 2, pp. 114-126. https://doi.org/10.3795/KSME-A.2009.33.2.114
  13. Baek, S.H., Hong, S.H., Cho, S.S., Jang, D.Y. and Joo, W.S., 2010, "Optimization of Process Parameters for Recycling of Mill Scale Using Taguchi Experimental Design," J. Mech. Sci. Technol., Vol. 24, No. 10, pp.2127-2134. https://doi.org/10.1007/s12206-010-0714-8
  14. ANSYS CFX-12.0, 2010, ANSYS CFX-Solver Theory Guide, ANSYS Inc.
  15. Barth, T. J. and Jesperson, D. C., 1989, "The Design and Application of Upwind Schemes on Unstructured Meshes," AIAA J., Vol. 89, No. 89-0366, pp. 1-12.
  16. Menter, F. R., 1994, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA J., Vol. 32, No. 8, pp. 1598-1605. https://doi.org/10.2514/3.12149
  17. DIN EN ISO 9906, 1999, Rotodynamic Pumps- Hydraulic Performance Acceptance Tests-Grades 1 and 2, International Standardization Organization, Geneva.
  18. Roache, P. J., 1998, Verification and Validation in Computational Science and Engineering, Hermosa Publishers, Albuquerque, NM.
  19. Meckesheimer, M., Booker, A. J., Barton, R. R. and Simpson, T. W., 2002, "Computationally Inexpensive Metamodel Assessment Strategies," AIAA J., Vol. 40, No. 10, pp. 2053-2060. https://doi.org/10.2514/2.1538
  20. More, J. J. and Wright, S. J., 1993, Optimization Software Guide, SIAM Publications, Philadelphia.
  21. ANSYS, 2007, Release 11.0 Documentation, SAS IP, Inc.
  22. Gautschi, W., 1996, Orthogonal Polynomials: Applications and Computations, Acta Numerica, Cambrige University Press.
  23. Park, S. H., 1996, Robust Design and Analysis for Quality Engineering, Chapman & Hall, London.

Cited by

  1. Performance and Internal Flow Characteristics of an Axial Flow Pump for a Floating Type Water Treatment System vol.17, pp.3, 2014, https://doi.org/10.5293/kfma.2014.17.3.052
  2. A Study on the Design for the Air Impeller of a Finishing Tool Unit vol.20, pp.3, 2015, https://doi.org/10.7315/CADCAM.2015.312
  3. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller vol.29, pp.11, 2015, https://doi.org/10.1007/s12206-015-1034-9
  4. Development of Drainage Pump for Rescue Sinking Ship vol.39, pp.3, 2015, https://doi.org/10.5916/jkosme.2015.39.3.248
  5. Design Optimization of Two-Way Pump Casing through Flow Analysis vol.31, pp.2, 2018, https://doi.org/10.7734/COSEIK.2018.31.2.79