• 제목/요약/키워드: 서양수학

검색결과 54건 처리시간 0.028초

18세기 조선산학서의 대수 영역에 나타난 서양수학 표현 및 계산법 연구 (A Study of the Representation and Algorithms of Western Mathematics Reflected on the Algebra Domains of Chosun-Sanhak in the 18th Century)

  • 최은아
    • 한국학교수학회논문집
    • /
    • 제23권1호
    • /
    • pp.25-44
    • /
    • 2020
  • 본 연구의 목적은 서양수학이 본격적으로 유입된 18세기 조선의 사회문화적 배경 하에 저슬된 조선 산학서의 대수 영역에서 서양수학의 표현과 계산법을 반영한 내용을 살펴보고, 서양식 계산법과 전통적 계산법의 공존 관계 또는 대체 양상을 분석하는 것이다. 이를 위해 18세기 산학문헌인 <구수략>, <고사신서>, <고사십이집>, <주해수용>을 중심으로 하여 <구일집>, <산학입문> 등 총 9종의 산학문헌을 분석하였다. 분석 결과, 산대 조작을 기반으로 하는 전통적인 사칙계산법이 과도기적 표현을 거쳐 유럽 수학의 필산으로 발달해가는 과정과 서양의 비례 개념과 비례식을 형식화하여 명시적으로 다루는 18세기 산학서의 공통적 변화를 확인하였다. 또한 연립일차방정식 해법의 계산식의 수학적 표현이 점진적으로 형식화되는 과정을 관찰하였다. 제곱근 계산법이 전통적인 개방술에서 증승개방법의 적용으로, 다시 유럽 산술이 반영된 제곱근을 구하는 필산으로 변화해가고 있음을 확인하였다. 이상의 18세기 조선산학 사례들은 수학의 진화적 속성과 사회문화적 속성을 이해할 수 있는 의미 있는 자료라고 할 수 있다.

조선산학의 수학적 표현의 변천에 대한 고찰 - 수와 연산, 문자와 식 영역을 중심으로 - (A study on the transition of the representations of numbers and mathematical symbols in Joseon mathematics)

  • 최은아
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제28권3호
    • /
    • pp.375-394
    • /
    • 2014
  • 본 연구는 수와 연산, 문자와 식 영역을 중심으로 조선산학의 수학적 표현의 변천과정을 고찰하였다. 고찰 결과, 서양 수학의 표현 방식을 도입하기 이전에 각 영역별로 조선산학의 고유한 표현과 과도기적 표현이 존재하였음을 확인하였다. 이에 대한 근거로 세 가지를 제시하였다. 첫째, 조선산학은 한자 표기의 승법적 기수법과 산대 표기의 위치적 기수법을 병행하였으나, 한자를 사용한 위치적 기수법이라는 과도기적 표현을 거쳐 인도 아라비아 숫자를 사용한 위치적 기수법의 단계로 진행하였다. 둘째, 한자를 축약하여 연산을 표현하거나 산대 조작과정을 산대로 표기하는 방식에서 서양 산술의 연산 표현을 수용하는 단계로 진행한 과정에서 전통적인 연산 표현 방식과 유럽 필산의 표현 방식을 절충한 표현이 등장하였다. 셋째, 조선산학에서 문자와 식은 산대로 계수들을 표현하는 천원술과 방정술로 표현되었지만, 좀 더 형식화된 생략적 대수의 단계를 거쳐 서양수학의 기호적 대수의 표현방식을 수용하였다.

동양의 영부족술과 서양의 가정법 (The Excess and Deficit Rule and The Rule of False Position)

  • 장혜원
    • 한국수학사학회지
    • /
    • 제18권1호
    • /
    • pp.33-48
    • /
    • 2005
  • 가정법은 중세 서양에서 상용된 대수 방정식의 산술적 해법이며, 보통 그 근원을 중국 수학의 영부족술이라 말한다. 이와 관련하여 중국 및 조선의 산학서와 이집트, 아랍, 인도 및 서양의 수학 교재를 고찰함으로써 수학사에 있어 그 역사적 자취를 추적하고 두 가지 사실을 확인한다. 첫째, 중국의 영부족술은 일차연립방정식의 해법인 방정술과는 구별되어 일차방정식으로 해석되는 특정 수량 관계를 다루기 위한 계산 알고리즘이며, 둘째, 동양의 영부족술과 서양의 가정법의 명확한 관계는 전자에서의 가정을 포함하는 응용 부분이 후자에서의 이중 가정법과 상응한다는 것이다. 나아가 가정법의 수학적 가치를 수학 교육적 가치로 환원하기 위한 제안을 포함한다.

  • PDF

역사속 과학인물-중국에 서양과학 소개한 이 선교사 마테오리치

  • 박성래
    • 과학과기술
    • /
    • 제31권3호통권346호
    • /
    • pp.26-28
    • /
    • 1998
  • 1518년 이탈리아 출신의 선교사로 중국에 들어와 서양과학기술을 처음소개한 마테오 리치(1552-1610년)는 직업적 과학자는 아니지만. 서양의 기하학을 동양에 보급하는 업적을 남겼다. 로마대학에서 과학과 신학을 전공한 리치는 중국에서 선교활동을 하는 동안 임금에게 자명종을 바쳐 환심을 끌었으며 동문산지등 많은 수학책을 남겼다. 서양의 천문학도 소개했고 특히 세계지도를 만들어 보급했는데그가 그린 지도인 양의현람도는 현재 숭전대 박물관에 보관되어 있어 더욱 관심을 모으고 있다.

  • PDF

이상설(李相卨)의 산서 수리(算書 數理) (Lee Sang Seol's mathematics book Su Ri)

  • 이상구;홍성사;홍영희
    • 한국수학사학회지
    • /
    • 제22권4호
    • /
    • pp.1-14
    • /
    • 2009
  • 17세기에 서양 수학이 조선에 들어온 이래 조선에 가장 큰 영향을 끼친 산서는 수리정온(數理精蘊)이었다. 19세기 말 조선에서 신교육이 시작되면서 수리정온(數理精蘊)이후의 서양 수학을 가르치게 되었다. 이 때 일본을 거쳐서 들어온 서양 수학은 주로 교과서로 나타난다. 이 논문은 독립 운동가로 잘 알려진 이상설(李相卨)의 저서인 수리(數理)를 조사하여 19세기 말 선교사를 통하여 서양 수학이 조선에 전해지는 과정을 알아본다. 특히 이상설(李相卨)이 조선 산학의 대수학 분야에서 중요한 변화와 발전을 이루어 낸 것을 밝혀낸다.

  • PDF

조선(朝鮮) 산학(算學)과 수리정온(數理精蘊) (Mathematics of Chosun Dynasty and $Sh\grave{u}\;l\breve{i}\;j\bar{i}ng\;y\grave{u}n$ (數理精蘊))

  • 홍영희
    • 한국수학사학회지
    • /
    • 제19권2호
    • /
    • pp.25-46
    • /
    • 2006
  • 서양 수학이 조선에 전입된 과정과 그 영향을 연구한다. 초기 과정은 최석정(崔錫鼎)$(1645\sim1715)$의 구수약(九數略), 홍정하(洪正夏)$(1684\sim?)$의 구일집(九一集), 중기 과정은 황윤석(黃胤錫)$(1719\sim1791)$의 이수신편(理藪新編), 홍대용(洪大容)$(1731\sim1781)$의 주해수용(籌解需用)을 통하여 조사한다. 서양 수학은 시헌력(時憲曆)의 도입과 함께 천문학의 연구를 위하여 도입되었다. 수리정온(數理精蘊)을 가장 잘 이해한 학산(鶴山) 초부(樵夫)의 수리정온보해(數理精蘊補解)(1730?)를 연구하고 서양 수학을 구조적으로 이해한 19세기의 이상혁(李尙爀)$(1810\sim?)$, 남병길(南秉吉)$(1820\sim1869)$을 연구한다.

  • PDF